
Virtualization Guide

openSUSE Leap 15.0

Virtualization Guide

openSUSE Leap 15.0

Describes virtualization technology in general, and introduces libvirt—the unified
interface to virtualization—and detailed information on specific hypervisors.

Publication Date: December 19, 2018

SUSE LLC
10 Canal Park Drive
Suite 200
Cambridge MA 02141
USA

https://www.suse.com/documentation

Copyright © 2006– 2018 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this

copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU

Free Documentation License”.

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trademarks are the

property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its

affiliates. Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does

not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be

held liable for possible errors or the consequences thereof.

https://www.suse.com/documentation
http://www.suse.com/company/legal/

Contents

About This Manual xiv

I INTRODUCTION 1

1 Virtualization Technology 2
1.1 Overview 2

1.2 Virtualization Capabilities 3

1.3 Virtualization Benefits 3

1.4 Virtualization Modes 4

1.5 I/O Virtualization 4

2 Introduction to Xen Virtualization 7

2.1 Basic Components 7

2.2 Xen Virtualization Architecture 8

3 Introduction to KVM Virtualization 10

3.1 Basic Components 10

3.2 KVM Virtualization Architecture 10

4 Introduction to Linux Containers 12

5 Virtualization Tools 13

5.1 Virtualization Console Tools 13

5.2 Virtualization GUI Tools 14

6 Installation of Virtualization Components 18

6.1 Installing KVM 18

iii Virtualization Guide

6.2 Installing Xen 18

6.3 Installing Containers 19

6.4 Patterns 19

6.5 Installing UEFI Support 20

II MANAGING VIRTUAL MACHINES WITH libvirt 21

7 Starting and Stopping libvirtd 22

8 Guest Installation 24

8.1 GUI-Based Guest Installation 24

8.2 Installing from the Command Line with virt-install 26

8.3 Advanced Guest Installation Scenarios 29

Including Add-on Products in the Installation 29

9 Basic VM Guest Management 30

9.1 Listing VM Guests 30

Listing VM Guests with Virtual Machine Manager 30 • Listing VM Guests with

virsh 31

9.2 Accessing the VM Guest via Console 31

Opening a Graphical Console 31 • Opening a Serial Console 33

9.3 Changing a VM Guest's State: Start, Stop, Pause 34

Changing a VM Guest's State with Virtual Machine Manager 35 • Changing a

VM Guest's State with virsh 35

9.4 Saving and Restoring the State of a VM Guest 36

Saving/Restoring with Virtual Machine Manager 37 • Saving and Restoring

with virsh 38

9.5 Creating and Managing Snapshots 38

Terminology 38 • Creating and Managing Snapshots with Virtual Machine

Manager 39 • Creating and Managing Snapshots with virsh 41

iv Virtualization Guide

9.6 Deleting a VM Guest 43

Deleting a VM Guest with Virtual Machine Manager 43 • Deleting a VM Guest

with virsh 44

9.7 Migrating VM Guests 44

Migration Requirements 44 • Migrating with Virtual Machine

Manager 46 • Migrating with virsh 47 • Step-by-Step Example 48

9.8 Monitoring 51

Monitoring with Virtual Machine Manager 51 • Monitoring with virt-
top 52 • Monitoring with kvm_stat 53

10 Connecting and Authorizing 55

10.1 Authentication 55

libvirtd Authentication 56 • VNC Authentication 60

10.2 Connecting to a VM Host Server 64

“system” Access for Non-Privileged Users 66 • Managing Connections with

Virtual Machine Manager 67

10.3 Configuring Remote Connections 68

Remote Tunnel over SSH (qemu+ssh or xen+ssh) 68 • Remote TLS/SSL

Connection with x509 Certificate (qemu+tls or xen+tls) 68

11 Managing Storage 77

11.1 Managing Storage with Virtual Machine Manager 79

Adding a Storage Pool 80 • Managing Storage Pools 83

11.2 Managing Storage with virsh 85

Listing Pools and Volumes 86 • Starting, Stopping and Deleting

Pools 87 • Adding Volumes to a Storage Pool 88 • Deleting

Volumes from a Storage Pool 89 • Attaching Volumes to a VM

Guest 89 • Detaching Volumes from a VM Guest 90

11.3 Locking Disk Files and Block Devices with virtlockd 91

Enable Locking 91 • Configure Locking 92

11.4 Online Resizing of Guest Block Devices 93

v Virtualization Guide

11.5 Sharing Directories between Host and Guests (File System Pass-
Through) 94

11.6 Using RADOS Block Devices with libvirt 95

12 Managing Networks 96

12.1 Virtual Networks 96

Managing Virtual Networks with Virtual Machine Manager 96 • Managing

Virtual Networks with virsh 101

12.2 Bridged Networking 106

Managing Network Bridges with YaST 107 • Managing Network Bridges from

the Command Line 108 • Using VLAN Interfaces 109

13 Configuring Virtual Machines 111

13.1 Machine Setup 112

Overview 112 • Performance 113 • Processor 114 • Memory 115 • Boot

Options 116

13.2 Storage 117

13.3 Controllers 118

13.4 Networking 119

13.5 Enabling Seamless and Synchronized Mouse Pointer Movement 121

13.6 Adding a CD/DVD-ROM Device with Virtual Machine Manager 121

13.7 Adding a Floppy Device with Virtual Machine Manager 122

13.8 Ejecting and Changing Floppy or CD/DVD-ROM Media with Virtual
Machine Manager 123

13.9 Changing the Machine Type with virsh 124

13.10 Assigning a Host PCI Device to a VM Guest 125

Adding a PCI Device with Virtual Machine Manager 125 • Adding a PCI Device

with virsh 126

vi Virtualization Guide

13.11 Assigning a Host USB Device to a VM Guest 129

Adding a USB Device with Virtual Machine Manager 129 • Adding a USB

Device with virsh 130

13.12 Adding SR-IOV Devices 131

Requirements 132 • Loading and Configuring the SR-IOV Host

Drivers 133 • Adding a VF Network Device to an Existing VM

Guest 136 • Dynamic Allocation of VFs from a Pool 138

13.13 Using Macvtap to Share VM Host Server Network Interfaces 140

III HYPERVISOR-INDEPENDENT FEATURES 142

14 Disk Cache Modes 143
14.1 Disk Interface Cache Modes 143

14.2 Description of Cache Modes 143

14.3 Data Integrity Implications of Cache Modes 145

14.4 Performance Implications of Cache Modes 145

14.5 Effect of Cache Modes on Live Migration 146

15 VM Guest Clock Settings 147

15.1 KVM: Using kvm_clock 147

Other Timekeeping Methods 148

15.2 Xen Virtual Machine Clock Settings 148

16 libguestfs 149

16.1 VM Guest Manipulation Overview 149

VM Guest Manipulation Risk 149 • libguestfs Design 150

16.2 Package Installation 150

16.3 Guestfs Tools 151

Modifying Virtual Machines 151 • Supported File Systems and Disk

Images 151 • virt-rescue 152 • virt-resize 152 • Other virt-*

vii Virtualization Guide

Tools 154 • guestfish 156 • Converting a Physical Machine into a KVM

Guest 157

16.4 Troubleshooting 159

Btrfs-related Problems 159 • Environment 160 • libguestfs-test-
tool 160

16.5 External References 160

IV MANAGING VIRTUAL MACHINES WITH XEN 161

17 Setting Up a Virtual Machine Host 162
17.1 Best Practices and Suggestions 162

17.2 Managing Dom0 Memory 163

Setting Dom0 Memory Allocation 163

17.3 Network Card in Fully Virtualized Guests 164

17.4 Starting the Virtual Machine Host 165

17.5 PCI Pass-Through 166

Configuring the Hypervisor for PCI Pass-Through 167 • Assigning

PCI Devices to VM Guest Systems 168 • VGA Pass-

Through 169 • Troubleshooting 169 • For More Information 170

17.6 USB Pass-Through 170

Identify the USB Device 170 • Emulated USB Device 171 • Paravirtualized

PVUSB 171

18 Virtual Networking 173

18.1 Network Devices for Guest Systems 173

18.2 Host-Based Routing in Xen 175

18.3 Creating a Masqueraded Network Setup 177

18.4 Special Configurations 180

Bandwidth Throttling in Virtual Networks 180 • Monitoring the Network

Traffic 180

viii Virtualization Guide

19 Managing a Virtualization Environment 182

19.1 XL—Xen Management Tool 182

Guest Domain Configuration File 183

19.2 Automatic Start of Guest Domains 184

19.3 Event Actions 184

19.4 Time Stamp Counter 185

19.5 Saving Virtual Machines 186

19.6 Restoring Virtual Machines 186

19.7 Virtual Machine States 187

20 Block Devices in Xen 188

20.1 Mapping Physical Storage to Virtual Disks 188

20.2 Mapping Network Storage to Virtual Disk 189

20.3 File-Backed Virtual Disks and Loopback Devices 189

20.4 Resizing Block Devices 190

20.5 Scripts for Managing Advanced Storage Scenarios 191

21 Virtualization: Configuration Options and
Settings 192

21.1 Virtual CD Readers 192

Virtual CD Readers on Paravirtual Machines 192 • Virtual CD Readers on Fully

Virtual Machines 192 • Adding Virtual CD Readers 193 • Removing Virtual

CD Readers 194

21.2 Remote Access Methods 194

21.3 VNC Viewer 194

Assigning VNC Viewer Port Numbers to Virtual Machines 195 • Using SDL

instead of a VNC Viewer 196

21.4 Virtual Keyboards 196

ix Virtualization Guide

21.5 Dedicating CPU Resources 197

Dom0 197 • VM Guests 198

21.6 HVM Features 198

Specify Boot Device on Boot 199 • Changing CPUIDs for

Guests 199 • Increasing the Number of PCI-IRQs 200

22 Administrative Tasks 201

22.1 The Boot Loader Program 201

22.2 Sparse Image Files and Disk Space 202

22.3 Migrating Xen VM Guest Systems 203

Preparing Block Devices for Migrations 204 • Migrating VM Guest

Systems 205

22.4 Monitoring Xen 205

Monitor Xen with xentop 205 • Additional Tools 206

22.5 Providing Host Information for VM Guest Systems 207

23 XenStore: Configuration Database Shared between
Domains 209

23.1 Introduction 209

23.2 File System Interface 209

XenStore Commands 210 • /vm 210 • /local/domain/<domid> 212

24 Xen as a High-Availability Virtualization Host 214

24.1 Xen HA with Remote Storage 214

24.2 Xen HA with Local Storage 215

24.3 Xen HA and Private Bridges 216

x Virtualization Guide

V MANAGING VIRTUAL MACHINES WITH QEMU 217

25 QEMU Overview 218

26 Setting Up a KVM VM Host Server 219

26.1 CPU Support for Virtualization 219

26.2 Required Software 219

26.3 KVM Host-Specific Features 221

Using the Host Storage with virtio-scsi 221 • Accelerated Networking

with vhost-net 222 • Scaling Network Performance with Multiqueue virtio-

net 223 • VFIO: Secure Direct Access to Devices 224 • VirtFS: Sharing

Directories between Host and Guests 226 • KSM: Sharing Memory Pages

between Guests 227

27 Guest Installation 229

27.1 Basic Installation with qemu-system-ARCH 229

27.2 Managing Disk Images with qemu-img 230

General Information on qemu-img Invocation 231 • Creating, Converting and

Checking Disk Images 232 • Managing Snapshots of Virtual Machines with

qemu-img 238 • Manipulate Disk Images Effectively 240

28 Running Virtual Machines with qemu-system-
ARCH 245

28.1 Basic qemu-system-ARCH Invocation 245

28.2 General qemu-system-ARCH Options 245

Basic Virtual Hardware 246 • Storing and Reading Configuration of Virtual

Devices 248 • Guest Real-Time Clock 249

28.3 Using Devices in QEMU 249

Block Devices 250 • Graphic Devices and Display Options 255 • USB

Devices 257 • Character Devices 258

28.4 Networking in QEMU 261

Defining a Network Interface Card 261 • User-Mode

Networking 262 • Bridged Networking 264

xi Virtualization Guide

28.5 Viewing a VM Guest with VNC 267

Secure VNC Connections 269

29 Virtual Machine Administration Using QEMU
Monitor 272

29.1 Accessing Monitor Console 272

29.2 Getting Information about the Guest System 272

29.3 Changing VNC Password 275

29.4 Managing Devices 275

29.5 Controlling Keyboard and Mouse 276

29.6 Changing Available Memory 277

29.7 Dumping Virtual Machine Memory 277

29.8 Managing Virtual Machine Snapshots 278

29.9 Suspending and Resuming Virtual Machine Execution 279

29.10 Live Migration 280

29.11 QMP - QEMU Machine Protocol 281

Access QMP via Standard Input/Output 281 • Access QMP via

Telnet 283 • Access QMP via Unix Socket 284 • Access QMP via libvirt's

virsh Command 284

VI MANAGING VIRTUAL MACHINES WITH LXC 285

30 Linux Containers 286
30.1 Setting Up LXC Distribution Containers 286

30.2 Setting Up LXC Application Containers 289

30.3 Securing a Container Using AppArmor 290

30.4 Differences between the libvirt LXC Driver and LXC 290

30.5 Sharing Namespaces across Containers 291

xii Virtualization Guide

30.6 For More Information 292

31 Migration from LXC to libvirt-lxc 293

31.1 Host Migration 293

31.2 Container Migration 294

31.3 Starting the Container 295

Glossary 296

A Appendix 307
A.1 Generating x509 Client/Server Certificates 307

B XM, XL Toolstacks and Libvirt framework 309

B.1 Xen Toolstacks 309

Upgrading from xend/xm to xl/libxl 309 • XL design 310 • Checklist before

Upgrade 310

B.2 Import Xen Domain Configuration into libvirt 311

B.3 Differences between the xm and xl Applications 313

Notation Conventions 313 • New Global Options 313 • Unchanged

Options 314 • Removed Options 318 • Changed Options 321 • New

Options 335

B.4 External links 336

B.5 Saving a Xen Guest Configuration in an xm Compatible Format 337

C GNU Licenses 338

C.1 GNU Free Documentation License 338

xiii Virtualization Guide

About This Manual

This manual offers an introduction to setting up and managing virtualization with KVM (Ker-
nel-based Virtual Machine), Xen, and Linux Containers (LXC) on openSUSE Leap. The rst part
introduces the different virtualization solutions by describing their requirements, their installa-
tions and SUSE's support status. The second part deals with managing VM Guests and VM Host
Servers with libvirt . The following parts describe various administration tasks and practices
and the last three parts deal with hypervisor-specific topics.

1 Available Documentation

Note: Online Documentation and Latest Updates
Documentation for our products is available at http://doc.opensuse.org/ , where you
can also nd the latest updates, and browse or download the documentation in various
formats.

In addition, the product documentation is usually available in your installed system under /
usr/share/doc/manual .

The following documentation is available for this product:

Book “Start-Up”

This manual will see you through your initial contact with openSUSE® Leap. Check out
the various parts of this manual to learn how to install, use and enjoy your system.

Book “Reference”

Covers system administration tasks like maintaining, monitoring and customizing an ini-
tially installed system.

Virtualization Guide

Describes virtualization technology in general, and introduces libvirt—the unified inter-
face to virtualization—and detailed information on specific hypervisors.

Book “AutoYaST Guide”

AutoYaST is a system for unattended mass deployment of openSUSE Leap systems using an
AutoYaST profile containing installation and configuration data. The manual guides you
through the basic steps of auto-installation: preparation, installation, and configuration.

xiv Available Documentation openSUSE Leap 15.0

http://doc.opensuse.org/

Book “Security Guide”

Introduces basic concepts of system security, covering both local and network security
aspects. Shows how to use the product inherent security software like AppArmor or the
auditing system that reliably collects information about any security-relevant events.

Book “System Analysis and Tuning Guide”

An administrator's guide for problem detection, resolution and optimization. Find how to
inspect and optimize your system by means of monitoring tools and how to efficiently
manage resources. Also contains an overview of common problems and solutions and of
additional help and documentation resources.

Book “GNOME User Guide”

Introduces the GNOME desktop of openSUSE Leap. It guides you through using and con-
figuring the desktop and helps you perform key tasks. It is intended mainly for end users
who want to make efficient use of GNOME as their default desktop.

2 Feedback
Several feedback channels are available:

Bug Reports

To report bugs for openSUSE Leap, go to https://bugzilla.opensuse.org/ , log in, and click
New.

Mail

For feedback on the documentation of this product, you can also send a mail to doc-
team@suse.com . Make sure to include the document title, the product version and the
publication date of the documentation. To report errors or suggest enhancements, provide
a concise description of the problem and refer to the respective section number and page
(or URL).

3 Documentation Conventions
The following notices and typographical conventions are used in this documentation:

/etc/passwd : directory names and le names

PLACEHOLDER : replace PLACEHOLDER with the actual value

xv Feedback openSUSE Leap 15.0

https://bugzilla.opensuse.org/

PATH : the environment variable PATH

ls , --help : commands, options, and parameters

user : users or groups

package name : name of a package

Alt , Alt – F1 : a key to press or a key combination; keys are shown in uppercase as on
a keyboard

File, File Save As: menu items, buttons

Dancing Penguins (Chapter Penguins, ↑Another Manual): This is a reference to a chapter in
another manual.

Commands that must be run with root privileges. Often you can also prefix these com-
mands with the sudo command to run them as non-privileged user.

root # command
tux > sudo command

Commands that can be run by non-privileged users.

tux > command

Notices

Warning: Warning Notice
Vital information you must be aware of before proceeding. Warns you about security
issues, potential loss of data, damage to hardware, or physical hazards.

Important: Important Notice
Important information you should be aware of before proceeding.

Note: Note Notice
Additional information, for example about differences in software versions.

xvi Documentation Conventions openSUSE Leap 15.0

Tip: Tip Notice
Helpful information, like a guideline or a piece of practical advice.

xvii Documentation Conventions openSUSE Leap 15.0

I Introduction

1 Virtualization Technology 2

2 Introduction to Xen Virtualization 7

3 Introduction to KVM Virtualization 10

4 Introduction to Linux Containers 12

5 Virtualization Tools 13

6 Installation of Virtualization Components 18

1 Virtualization Technology

Virtualization is a technology that provides a way for a machine (Host) to run an-
other operating system (guest virtual machines) on top of the host operating system.

1.1 Overview

openSUSE Leap includes the latest open source virtualization technologies, Xen and KVM. With
these hypervisors, openSUSE Leap can be used to provision, de-provision, install, monitor and
manage multiple virtual machines (VM Guests) on a single physical system (for more information
see Hypervisor).

Out of the box, openSUSE Leap can create virtual machines running both modified, highly tuned,
paravirtualized operating systems and fully virtualized unmodified operating systems. Full vir-
tualization allows the guest OS to run unmodified and requires the presence of AMD64/Intel 64
processors which support either Intel* Virtualization Technology (Intel VT) or AMD* Virtual-
ization (AMD-V).

The primary component of the operating system that enables virtualization is a hypervisor (or
virtual machine manager), which is a layer of software that runs directly on server hardware.
It controls platform resources, sharing them among multiple VM Guests and their operating
systems by presenting virtualized hardware interfaces to each VM Guest.

openSUSE is a Linux server operating system that offers two types of hypervisors: Xen and KVM.
Both hypervisors support virtualization on the AMD64/Intel 64 architecture. For the POWER
architecture, KVM is supported. Both Xen and KVM support full virtualization mode. In addition,
Xen supports paravirtualized mode. openSUSE Leap with Xen or KVM acts as a virtualization
host server (VHS) that supports VM Guests with its own guest operating systems. The SUSE VM
Guest architecture consists of a hypervisor and management components that constitute the
VHS, which runs many application-hosting VM Guests.

In Xen, the management components run in a privileged VM Guest often called Dom0. In KVM,
where the Linux kernel acts as the hypervisor, the management components run directly on
the VHS.

2 Overview openSUSE Leap 15.0

1.2 Virtualization Capabilities

Virtualization design provides many capabilities to your organization. Virtualization of operat-
ing systems is used in many computing areas:

Server consolidation: Many servers can be replaced by one big physical server, so hardware
is consolidated, and Guest Operating Systems are converted to virtual machine. It provides
the ability to run legacy software on new hardware.

Isolation: guest operating system can be fully isolated from the Host running it. So if the
virtual machine is corrupted, the Host system is not harmed.

Migration: A process to move a running virtual machine to another physical machine. Live
migration is an extended feature that allows this move without disconnection of the client
or the application.

Disaster recovery: Virtualized guests are less dependent on the hardware, and the Host
server provides snapshot features to be able to restore a known running system without
any corruption.

Dynamic load balancing: A migration feature that brings a simple way to load-balance
your service across your infrastructure.

1.3 Virtualization Benefits

Virtualization brings a lot of advantages while providing the same service as a hardware server.

First, it reduces the cost of your infrastructure. Servers are mainly used to provide a service to
a customer, and a virtualized operating system can provide the same service, with:

Less hardware: You can run several operating system on one host, so all hardware main-
tenance will be reduced.

Less power/cooling: Less hardware means you do not need to invest more in electric power,
backup power, and cooling if you need more service.

Save space: Your data center space will be saved because you do not need more hardware
servers (less servers than service running).

3 Virtualization Capabilities openSUSE Leap 15.0

Less management: Using a VM Guest simplifies the administration of your infrastructure.

Agility and productivity: Virtualization provides migration capabilities, live migration and
snapshots. These features reduce downtime, and bring an easy way to move your service
from one place to another without any service interruption.

1.4 Virtualization Modes
Guest operating systems are hosted on virtual machines in either full virtualization (FV) mode
or paravirtual (PV) mode. Each virtualization mode has advantages and disadvantages.

Full virtualization mode lets virtual machines run unmodified operating systems, such as
Windows* Server 2003. It can use either Binary Translation or hardware-assisted virtualiza-
tion technology, such as AMD* Virtualization or Intel* Virtualization Technology. Using
hardware assistance allows for better performance on processors that support it.

To be able to run under paravirtual mode, guest operating systems usually need to be
modified for the virtualization environment. However, operating systems running in par-
avirtual mode have better performance than those running under full virtualization.
Operating systems currently modified to run in paravirtual mode are called paravirtualized
operating systems and include openSUSE Leap and NetWare® 6.5 SP8.

1.5 I/O Virtualization
VM Guests not only share CPU and memory resources of the host system, but also the I/O sub-
system. Because software I/O virtualization techniques deliver less performance than bare met-
al, hardware solutions that deliver almost “native” performance have been developed recently.
openSUSE Leap supports the following I/O virtualization techniques:

Full Virtualization

Fully Virtualized (FV) drivers emulate widely supported real devices, which can be used
with an existing driver in the VM Guest. The guest is also called Hardware Virtual Machine
(HVM). Since the physical device on the VM Host Server may differ from the emulated one,
the hypervisor needs to process all I/O operations before handing them over to the physical
device. Therefore all I/O operations need to traverse two software layers, a process that
not only significantly impacts I/O performance, but also consumes CPU time.

Paravirtualization

4 Virtualization Modes openSUSE Leap 15.0

Paravirtualization (PV) allows direct communication between the hypervisor and the VM
Guest. With less overhead involved, performance is much better than with full virtualiza-
tion. However, paravirtualization requires either the guest operating system to be modified
to support the paravirtualization API or paravirtualized drivers.

PVHVM

This type of virtualization enhances HVM (see Full Virtualization) with paravirtualized (PV)
drivers, and PV interrupt and timer handling.

VFIO

VFIO stands for Virtual Function I/O and is a new user-level driver framework for Linux. It
replaces the traditional KVM PCI Pass-Through device assignment. The VFIO driver exposes
direct device access to user space in a secure memory (IOMMU) protected environment.
With VFIO, a VM Guest can directly access hardware devices on the VM Host Server (pass-
through), avoiding performance issues caused by emulation in performance critical paths.
This method does not allow to share devices—each device can only be assigned to a single
VM Guest. VFIO needs to be supported by the VM Host Server CPU, chipset and the BIOS/
EFI.
Compared to the legacy KVM PCI device assignment, VFIO has the following advantages:

Resource access is compatible with secure boot.

Device is isolated and its memory access protected.

Offers a user space device driver with more flexible device ownership model.

Is independent of KVM technology, and not bound to x86 architecture only.

As of openSUSE 42.2, the USB and PCI Pass-through methods of device assignment are
considered deprecated and were superseded by the VFIO model.

SR-IOV

The latest I/O virtualization technique, Single Root I/O Virtualization SR-IOV combines the
benefits of the aforementioned techniques—performance and the ability to share a device
with several VM Guests. SR-IOV requires special I/O devices, that are capable of replicating
resources so they appear as multiple separate devices. Each such “pseudo” device can be
directly used by a single guest. However, for network cards for example the number of
concurrent queues that can be used is limited, potentially reducing performance for the
VM Guest compared to paravirtualized drivers. On the VM Host Server, SR-IOV must be
supported by the I/O device, the CPU and chipset, the BIOS/EFI and the hypervisor—for
setup instructions see Section 13.10, “Assigning a Host PCI Device to a VM Guest”.

5 I/O Virtualization openSUSE Leap 15.0

Important: Requirements for VFIO and SR-IOV
To be able to use the VFIO and SR-IOV features, the VM Host Server needs to fulfill the
following requirements:

IOMMU needs to be enabled in the BIOS/EFI.

For Intel CPUs, the kernel parameter intel_iommu=on needs to be provided on the
kernel command line. For more information, see Book “Reference”, Chapter 12 “The

Boot Loader GRUB 2”, Section 12.3.3.2 “Kernel Parameters Tab”.

The VFIO infrastructure needs to be available. This can be achieved by loading the
kernel module vfio_pci . For more information, see Book “Reference”, Chapter 10

“The systemd Daemon”, Section 10.6.4 “Loading Kernel Modules”.

6 I/O Virtualization openSUSE Leap 15.0

2 Introduction to Xen Virtualization

This chapter introduces and explains the components and technologies you need to understand
to set up and manage a Xen-based virtualization environment.

2.1 Basic Components
The basic components of a Xen-based virtualization environment are the Xen hypervisor, the
Dom0, any number of other VM Guests, and the tools, commands, and configuration les that let
you manage virtualization. Collectively, the physical computer running all these components is
called a VM Host Server because together these components form a platform for hosting virtual
machines.

The Xen Hypervisor

The Xen hypervisor, sometimes simply called a virtual machine monitor, is an open source
software program that coordinates the low-level interaction between virtual machines and
physical hardware.

The Dom0

The virtual machine host environment, also called Dom0 or controlling domain, is com-
posed of several components, such as:

openSUSE Leap provides a graphical and a command line environment to manage
the virtual machine host components and its virtual machines.

Note
The term “Dom0” refers to a special domain that provides the management
environment. This may be run either in graphical or in command line mode.

The xl tool stack based on the xenlight library (libxl). Use it to manage Xen guest
domains.

QEMU—an open source software that emulates a full computer system, including a
processor and various peripherals. It provides the ability to host operating systems
in both full virtualization or paravirtualization mode.

Xen-Based Virtual Machines

7 Basic Components openSUSE Leap 15.0

A Xen-based virtual machine, also called a VM Guest or DomU , consists of the following
components:

At least one virtual disk that contains a bootable operating system. The virtual disk
can be based on a le, partition, volume, or other type of block device.

A configuration le for each guest domain. It is a text le following the syntax de-
scribed in the manual page man 5 xl.conf .

Several network devices, connected to the virtual network provided by the control-
ling domain.

Management Tools, Commands, and Configuration Files

There is a combination of GUI tools, commands, and configuration les to help you manage
and customize your virtualization environment.

2.2 Xen Virtualization Architecture

The following graphic depicts a virtual machine host with four virtual machines. The Xen hyper-
visor is shown as running directly on the physical hardware platform. Note that the controlling
domain is also a virtual machine, although it has several additional management tasks compared
to all the other virtual machines.

8 Xen Virtualization Architecture openSUSE Leap 15.0

FIGURE 2.1: XEN VIRTUALIZATION ARCHITECTURE

On the left, the virtual machine host’s Dom0 is shown running the openSUSE Leap operating
system. The two virtual machines shown in the middle are running paravirtualized operating
systems. The virtual machine on the right shows a fully virtual machine running an unmodified
operating system, such as the latest version of Microsoft Windows/Server.

9 Xen Virtualization Architecture openSUSE Leap 15.0

3 Introduction to KVM Virtualization

3.1 Basic Components

KVM is a full virtualization solution for the AMD64/Intel 64 and the IBM Z architectures sup-
porting hardware virtualization.

VM Guests (virtual machines), virtual storage, and virtual networks can be managed with QEMU
tools directly, or with the libvirt -based stack. The QEMU tools include qemu-system-ARCH ,
the QEMU monitor, qemu-img , and qemu-ndb . A libvirt -based stack includes libvirt itself,
along with libvirt -based applications such as virsh , virt-manager , virt-install , and
virt-viewer .

3.2 KVM Virtualization Architecture

This full virtualization solution consists of two main components:

A set of kernel modules (kvm.ko , kvm-intel.ko , and kvm-amd.ko) that provides the
core virtualization infrastructure and processor-specific drivers.

A user space program (qemu-system-ARCH) that provides emulation for virtual devices
and control mechanisms to manage VM Guests (virtual machines).

The term KVM more properly refers to the kernel level virtualization functionality, but is in
practice more commonly used to refer to the user space component.

10 Basic Components openSUSE Leap 15.0

FIGURE 3.1: KVM VIRTUALIZATION ARCHITECTURE

Note: Hyper-V Emulation Support
QEMU can provide certain Hyper-V hypercalls for Windows* guests to partly emulate a
Hyper-V environment. This can be used to achieve better behavior for Windows* guests
that are Hyper-V enabled.

11 KVM Virtualization Architecture openSUSE Leap 15.0

4 Introduction to Linux Containers

Linux containers are a lightweight virtualization method to run multiple virtual units (“contain-
ers”) simultaneously on a single host. This is similar to the chroot environment. Containers are
isolated with kernel Control Groups (cgroups) and kernel Namespaces.

Containers provide virtualization at the operating system level where the kernel controls the iso-
lated containers. This is unlike full virtualization solutions like Xen or KVM where the processor
simulates a complete hardware environment and controls virtual machines.

Conceptually, containers can be seen as an improved chroot technique. The difference is that a
chroot environment separates only the le system, whereas containers go further and provide
resource management and control via cgroups.

BENEFITS OF CONTAINERS

Isolating applications and operating systems through containers.

Providing nearly native performance as container manages allocation of resources in re-
al-time.

Controlling network interfaces and applying resources inside containers through cgroups.

LIMITATIONS OF CONTAINERS

All containers run inside the host system's kernel and not with a different kernel.

Only allows Linux “guest” operating systems.

Security depends on the host system. Container is not secure. If you need a secure system,
you can confine it using an AppArmor or SELinux profile.

12 openSUSE Leap 15.0

5 Virtualization Tools

libvirt is a library that provides a common API for managing popular virtualiza-
tion solutions, among them KVM, LXC, and Xen. The library provides a normalized
management API for these virtualization solutions, allowing a stable, cross-hypervi-
sor interface for higher-level management tools. The library also provides APIs for
management of virtual networks and storage on the VM Host Server. The configura-
tion of each VM Guest is stored in an XML le.

With libvirt you can also manage your VM Guests remotely. It supports TLS en-
cryption, x509 certificates and authentication with SASL. This enables managing
VM Host Servers centrally from a single workstation, alleviating the need to access
each VM Host Server individually.

Using the libvirt -based tools is the recommended way of managing VM Guests.
Interoperability between libvirt and libvirt -based applications has been tested
and is an essential part of SUSE's support stance.

5.1 Virtualization Console Tools

The following libvirt-based tools for the command line are available on openSUSE Leap. All
tools are provided by packages carrying the tool's name.

virsh

A command line tool to manage VM Guests with similar functionality as the Virtual Ma-
chine Manager. Allows you to change a VM Guest's status (start, stop, pause, etc.), to set
up new guests and devices, or to edit existing configurations. virsh is also useful to script
VM Guest management operations.
virsh takes the rst argument as a command and further arguments as options to this
command:

virsh [-c URI] COMMAND DOMAIN-ID [OPTIONS]

13 Virtualization Console Tools openSUSE Leap 15.0

Like zypper , virsh can also be called without a command. In this case it starts a shell
waiting for your commands. This mode is useful when having to run subsequent com-
mands:

~> virsh -c qemu+ssh://wilber@mercury.example.com/system
Enter passphrase for key '/home/wilber/.ssh/id_rsa':
Welcome to virsh, the virtualization interactive terminal.

Type: 'help' for help with commands
 'quit' to quit

virsh # hostname
mercury.example.com

virt-install

A command line tool for creating new VM Guests using the libvirt library. It supports
graphical installations via VNC or SPICE protocols. Given suitable command line arguments,
virt-install can run completely unattended. This allows for easy automation of guest
installs. virt-install is the default installation tool used by the Virtual Machine Man-
ager.

5.2 Virtualization GUI Tools

The following libvirt-based graphical tools are available on openSUSE Leap. All tools are pro-
vided by packages carrying the tool's name.

Virtual Machine Manager (virt-manager)

The Virtual Machine Manager is a desktop tool for managing VM Guests. It provides the
ability to control the lifecycle of existing machines (start/shutdown, pause/resume, save/
restore) and create new VM Guests. It allows managing various types of storage and virtual
networks. It provides access to the graphical console of VM Guests with a built-in VNC
viewer and can be used to view performance statistics. virt-manager supports connecting
to a local libvirtd , managing a local VM Host Server, or a remote libvirtd managing
a remote VM Host Server.

14 Virtualization GUI Tools openSUSE Leap 15.0

To start the Virtual Machine Manager, enter virt-manager at the command prompt.

Note
To disable automatic USB device redirection for VM Guest using spice, either launch
virt-manager with the --spice-disable-auto-usbredir parameter or run the
following command to persistently change the default behavior:

tux > dconf write /org/virt-manager/virt-manager/console/auto-redirect false

virt-viewer

15 Virtualization GUI Tools openSUSE Leap 15.0

A viewer for the graphical console of a VM Guest. It uses SPICE (configured by default on
the VM Guest) or VNC protocols and supports TLS and x509 certificates. VM Guests can be
accessed by name, ID, or UUID. If the guest is not already running, the viewer can be told
to wait until the guest starts, before attempting to connect to the console. virt-viewer
is not installed by default and is available after installing the package virt-viewer .

Note
To disable automatic USB device redirection for VM Guest using spice, add an empty
filter using the --spice-usbredir-auto-redirect-filter='' parameter.

yast2 vm

16 Virtualization GUI Tools openSUSE Leap 15.0

A YaST module that simplifies the installation of virtualization tools and can set up a
network bridge:

17 Virtualization GUI Tools openSUSE Leap 15.0

6 Installation of Virtualization Components

None of the virtualization tools is installed by default.

6.1 Installing KVM

To install KVM and KVM tools, proceed as follows:

1. Start YaST and choose Virtualization Install Hypervisor and Tools.

2. Select KVM server for a minimal installation of QEMU tools. Select KVM tools if a libvirt -
based management stack is also desired. Confirm with Accept.

3. To enable normal networking for the VM Guest, using a network bridge is recommended.
YaST offers to automatically configure a bridge on the VM Host Server. Agree to do so by
choosing Yes, otherwise choose No.

4. After the setup has been finished, you can start setting up VM Guests. Rebooting the VM
Host Server is not required.

6.2 Installing Xen

To install Xen and Xen tools, proceed as follows:

1. Start YaST and choose Virtualization Install Hypervisor and Tools.

2. Select Xen server for a minimal installation of Xen tools. Select Xen tools if a libvirt -
based management stack is also desired. Confirm with Accept.

3. To enable normal networking for the VM Guest, using a network bridge is recommended.
YaST offers to automatically configure a bridge on the VM Host Server. Agree to do so by
choosing Yes, otherwise choose No.

4. After the setup has been finished, you need to reboot the machine with the Xen kernel.

18 Installing KVM openSUSE Leap 15.0

Tip: Default Boot Kernel
If everything works as expected, change the default boot kernel with YaST and
make the Xen-enabled kernel the default. For more information about changing the
default kernel, see Book “Reference”, Chapter 12 “The Boot Loader GRUB 2”, Section 12.3

“Configuring the Boot Loader with YaST”.

6.3 Installing Containers

To install containers, proceed as follows:

1. Start YaST and choose Virtualization Install Hypervisor and Tools.

2. Select libvirt lxc daemon and confirm with Accept.

6.4 Patterns

It is possible using Zypper and patterns to install virtualization packages. Run the command
zypper in -t pattern PATTERN . Available patterns are:

KVM

kvm_server : sets up the KVM VM Host Server with QEMU tools for management

kvm_tools : installs the libvirt tools for managing and monitoring VM Guests

Xen

xen_server : sets up the Xen VM Host Server with Xen tools for management

xen_tools : installs the libvirt tools for managing and monitoring VM Guests

Containers

There is no pattern for containers; install the libvirt-daemon-lxc package.

19 Installing Containers openSUSE Leap 15.0

6.5 Installing UEFI Support
UEFI support is provided by OVMF (Open Virtual Machine Firmware). To enable UEFI boot, rst
install the qemu-ovmf-x86_64 or qemu-uefi-aarch64 package.

libvirt is configured using /usr/share/qemu/ovmf-x86_64-ms-4m-code.bin and /usr/
share/qemu/ovmf-x86_64-ms-4m-vars.bin as default UEFI rmware and VARS images. For
ARM the defaults are /usr/share/qemu/aavmf-aarch64-code.bin and /usr/share/qe-
mu/aavmf-aarch64-vars.bin .

The packages contain the following les:

root # rpm -ql qemu-ovmf-x86_64
/usr/share/qemu/ovmf-x86_64-ms-code.bin
/usr/share/qemu/ovmf-x86_64-ms-vars.bin
/usr/share/qemu/ovmf-x86_64-ms.bin
/usr/share/qemu/ovmf-x86_64-opensuse-code.bin
/usr/share/qemu/ovmf-x86_64-opensuse-vars.bin
/usr/share/qemu/ovmf-x86_64-opensuse.bin
/usr/share/qemu/ovmf-x86_64-suse-code.bin
/usr/share/qemu/ovmf-x86_64-suse-vars.bin
/usr/share/qemu/ovmf-x86_64-suse.bin
/usr/share/qemu/ovmf-x86_64-code.bin
/usr/share/qemu/ovmf-x86_64-vars.bin
/usr/share/qemu/ovmf-x86_64.bin

The *-code.bin les are the UEFI rmwares. The *-vars.bin les are corresponding variable
store images that can be used as a template for per-VM non-volatile store. libvirt copies the
specified vars template to a per-VM path under /var/lib/libvirt/qemu/nvram/ when rst
creating the VM. Files without code or vars in the name can be used as a single UEFI image.
They are not as useful since no UEFI variables persist across power cycles of the VM.

The *-ms*.bin les contain Microsoft keys as found on real hardware. Therefore, they are
configured as default in libvirt . Likewise, the *-suse*.bin les contain preinstalled SUSE
and openSUSE keys. There is also a set of les with no preinstalled keys.

For details, see Using UEFI and Secure Boot and http://www.linux-kvm.org/downloads/lersek/ovmf-

whitepaper-c770f8c.txt .

20 Installing UEFI Support openSUSE Leap 15.0

http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt

II Managing Virtual Machines with
libvirt

7 Starting and Stopping libvirtd 22

8 Guest Installation 24

9 Basic VM Guest Management 30

10 Connecting and Authorizing 55

11 Managing Storage 77

12 Managing Networks 96

13 Configuring Virtual Machines 111

7 Starting and Stopping libvirtd

The communication between the virtualization solutions (KVM, Xen, LXC) and the libvirt API
is managed by the daemon libvirtd . It needs to run on the VM Host Server. libvirt client
applications such as virt-manager, possibly running on a remote machine, communicate with
libvirtd running on the VM Host Server, which services the request using native hypervisor
APIs. Use the following commands to start and stop libvirtd or check its status:

tux > sudo systemctl start libvirtd

tux > sudo systemctl status libvirtd
libvirtd.service - Virtualization daemon
Loaded: loaded (/usr/lib/systemd/system/libvirtd.service; enabled)
Active: active (running) since Mon 2014-05-12 08:49:40 EDT; 2s ago
[...]

tux > sudo systemctl stop libvirtd

tux > sudo systemctl status libvirtd
[...]
Active: inactive (dead) since Mon 2014-05-12 08:51:11 EDT; 4s ago
[...]

To automatically start libvirtd at boot time, either activate it using the YaST Services Manager
module or by entering the following command:

tux > sudo systemctl enable libvirtd

Important: Conflicting Services: libvirtd and
xendomains
If libvirtd fails to start, check if the service xendomains is loaded:

tux > systemctl is-active xendomains
active

If the command returns active , you need to stop xendomains before you can start
the libvirtd daemon. If you want libvirtd to also start after rebooting, additionally
prevent xendomains from starting automatically. Disable the service:

tux > sudo systemctl stop xendomains
tux > sudo systemctl disable xendomains

22 openSUSE Leap 15.0

tux > sudo systemctl start libvirtd

xendomains and libvirtd provide the same service and when used in parallel may
interfere with one another. As an example, xendomains may attempt to start a domU
already started by libvirtd .

23 openSUSE Leap 15.0

8 Guest Installation

A VM Guest consists of an image containing an operating system and data les and a configu-
ration le describing the VM Guest's virtual hardware resources. VM Guests are hosted on and
controlled by the VM Host Server. This section provides generalized instructions for installing
a VM Guest.

Virtual machines have few if any requirements above those required to run the operating system.
If the operating system has not been optimized for the virtual machine host environment, it can
only run on hardware-assisted virtualization computer hardware, in full virtualization mode, and
requires specific device drivers to be loaded. The hardware that is presented to the VM Guest
depends on the configuration of the host.

You should be aware of any licensing issues related to running a single licensed copy of an
operating system on multiple virtual machines. Consult the operating system license agreement
for more information.

8.1 GUI-Based Guest Installation
The New VM wizard helps you through the steps required to create a virtual machine and install
its operating system. There are two ways to start it: Within Virtual Machine Manager, either
click Create New Virtual Machine or choose File New Virtual Machine. Alternatively, start YaST
and choose Virtualization Create Virtual Machines for Xen and KVM.

1. Start the New VM wizard either from YaST or Virtual Machine Manager.

2. Choose an installation source—either a locally available media or a network installation
source. If you want to set up your VM Guest from an existing image, choose import existing
disk image.
On a VM Host Server running the Xen hypervisor, you can choose whether to install a
paravirtualized or a fully virtualized guest. The respective option is available under Ar-
chitecture Options. Depending on this choice, not all installation options may be available.

3. Depending on your choice in the previous step, you need to provide the following data:

Local Installation Media (ISO image or CDROM)

Specify the path on the VM Host Server to an ISO image containing the installation
data. If it is available as a volume in a libvirt storage pool, you can also select it
using Browse. For more information, see Chapter 11, Managing Storage.

24 GUI-Based Guest Installation openSUSE Leap 15.0

Alternatively, choose a physical CD-ROM or DVD inserted in the optical drive of the
VM Host Server.

Network Installation (HTTP, FTP, or NFS)

Provide the URL pointing to the installation source. Valid URL prefixes are, for ex-
ample, ftp:// , http:// , https:// , and nfs:// .
Under URL Options, provide a path to an auto-installation le (AutoYaST or Kick-
start, for example) and kernel parameters. Having provided a URL, the operating
system should be automatically detected correctly. If this is not the case, deselect
Automatically Detect Operating System Based on Install-Media and manually select the
OS Type and Version.

Network Boot (PXE)

When booting via PXE, you only need to provide the OS Type and the Version.

Import Existing Disk Image

To set up the VM Guest from an existing image, you need to specify the path on the
VM Host Server to the image. If it is available as a volume in a libvirt storage pool,
you can also select it using Browse. For more information, see Chapter 11, Managing

Storage.

4. Choose the memory size and number of CPUs for the new virtual machine.

5. This step is omitted when Import an Existing Image is chosen in the rst step.
Set up a virtual hard disk for the VM Guest. Either create a new disk image or choose an
existing one from a storage pool (for more information, see Chapter 11, Managing Storage).
If you choose to create a disk, a qcow2 image will be created. By default, it is stored under
/var/lib/libvirt/images .
Setting up a disk is optional. If you are running a live system directly from CD or DVD,
for example, you can omit this step by deactivating Enable Storage for this Virtual Machine.

6. On the last screen of the wizard, specify the name for the virtual machine. To be offered
the possibility to review and make changes to the virtualized hardware selection, activate
Customize configuration before install. Find options to specify the network device under
Network Selection.
Click Finish.

7. (Optional) If you kept the defaults in the previous step, the installation will now start. If you
selected Customize configuration before install, a VM Guest configuration dialog opens. For
more information about configuring VM Guests, see Chapter 13, Configuring Virtual Machines.

25 GUI-Based Guest Installation openSUSE Leap 15.0

When you are done configuring, click Begin Installation.

Tip: Passing Key Combinations to Virtual Machines
The installation starts in a Virtual Machine Manager console window. Some key combi-
nations, such as Ctrl – Alt – F1 , are recognized by the VM Host Server but are not passed
to the virtual machine. To bypass the VM Host Server, Virtual Machine Manager provides
the “sticky key” functionality. Pressing Ctrl , Alt , or Shift three times makes the
key sticky, then you can press the remaining keys to pass the combination to the virtual
machine.

For example, to pass Ctrl – Alt – F2 to a Linux virtual machine, press Ctrl three times,
then press Alt – F2 . You can also press Alt three times, then press Ctrl – F2 .

The sticky key functionality is available in the Virtual Machine Manager during and after
installing a VM Guest.

8.2 Installing from the Command Line with virt-
install
virt-install is a command line tool that helps you create new virtual machines using the
libvirt library. It is useful if you cannot use the graphical user interface, or need to automatize
the process of creating virtual machines.

virt-install is a complex script with a lot of command line switches. The following are
required. For more information, see the man page of virt-install (1).

General Options

26 Installing from the Command Line with virt-install openSUSE Leap 15.0

--name VM_GUEST_NAME : Specify the name of the new virtual machine. The name
must be unique across all guests known to the hypervisor on the same connection. It
is used to create and name the guest’s configuration le and you can access the guest
with this name from virsh . Alphanumeric and _-.:+ characters are allowed.

--memory REQUIRED_MEMORY : Specify the amount of memory to allocate for the new
virtual machine in megabytes.

--vcpus NUMBER_OF_CPUS : Specify the number of virtual CPUs. For best perfor-
mance, the number of virtual processors should be less than or equal to the number
of physical processors.

Virtualization Type

--paravirt : Set up a paravirtualized guest. This is the default if the VM Host Server
supports paravirtualization and full virtualization.

--hvm : Set up a fully virtualized guest.

--virt-type HYPERVISOR : Specify the hypervisor. Supported values are kvm , xen ,
or lxc .

Guest Storage

Specify one of --disk , --filesystem or --nodisks the type of the storage for the new
virtual machine. For example, --disk size=10 creates 10 GB disk in the default image
location for the hypervisor and uses it for the VM Guest. --filesystem /export/path/
on/vmhost specifies the directory on the VM Host Server to be exported to the guest. And
--nodisks sets up a VM Guest without a local storage (good for Live CDs).

Installation Method

Specify the installation method using one of --location , --cdrom , --pxe , --import ,
or --boot .

Accessing the Installation

Use the --graphics VALUE option to specify how to access the installation. openSUSE
Leap supports the values vnc or none .
If using VNC virt-install tries to launch virt-viewer . If it is not installed or cannot
be run, connect to the VM Guest manually with you preferred viewer. To explicitly pre-
vent virt-install from launching the viewer use --noautoconsole . To define a pass-
word for accessing the VNC session, use the following syntax: --graphics vnc,pass-
word=PASSWORD .

27 Installing from the Command Line with virt-install openSUSE Leap 15.0

In case you are using --graphics none , you can access the VM Guest through operating
system supported services, such as SSH or VNC. Refer to the operating system installation
manual on how to set up these services in the installation system.

Passing Kernel and Initrd Files

It is possible to directly specify the Kernel and Initrd of the installer, for example from a
network source.
To pass additional boot parameters, use the --extra-args option. This can be used to
specify a network configuration. For details, see https://en.opensuse.org/SDB:Linuxrc .

EXAMPLE 8.1: LOADING KERNEL AND INITRD FROM HTTP SERVER

root # virt-install --location \
"http://download.opensuse.org/pub/opensuse/distribution/leap/15.0/repo/oss" \
--extra-args="textmode=1" --name "Leap15" --memory 2048 --virt-type kvm \
--connect qemu:///system --disk size=10 --graphics vnc --network \
network=vnet_nated

Enabling the Console

By default, the console is not enabled for new virtual machines installed using virt-in-
stall . To enable it, use --extra-args="console=ttyS0 textmode=1" as in the follow-
ing example:

tux > virt-install --virt-type kvm --name sles12 --memory 1024 \
 --disk /var/lib/libvirt/images/disk1.qcow2 --os-variant sles12
 --extra-args="console=ttyS0 textmode=1" --graphics none

After the installation finishes, the /etc/default/grub le in the VM image will be up-
dated with the console=ttyS0 option on the GRUB_CMDLINE_LINUX_DEFAULT line.

Using UEFI and Secure Boot

Install OVMF as described in Section 6.5, “Installing UEFI Support”. Then add the --boot uefi
option to the virt-install command.
Secure boot will be used automatically when setting up a new VM with OMVF. To use a
specific rmware, use --boot loader=/usr/share/qemu/ovmf-VERSION.bin . Replace
VERSION with the le you need.

EXAMPLE 8.2: EXAMPLE OF A virt-install COMMAND LINE

The following command line example creates a new SUSE Linux Enterprise Desktop 12
virtual machine with a virtio accelerated disk and network card. It creates a new 10 GB
qcow2 disk image as a storage, the source installation media being the host CD-ROM drive.
It will use VNC graphics, and it will auto-launch the graphical client.

28 Installing from the Command Line with virt-install openSUSE Leap 15.0

https://en.opensuse.org/SDB:Linuxrc

KVM

tux > virt-install --connect qemu:///system --virt-type kvm --name sled12 \
--memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics vnc \
--os-variant sled12

Xen

tux > virt-install --connect xen:// --virt-type xen --name sled12 \
--memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics vnc \
--os-variant sled12

8.3 Advanced Guest Installation Scenarios
This section provides instructions for operations exceeding the scope of a normal installation,
such as memory ballooning and installing add-on products.

8.3.1 Including Add-on Products in the Installation

Some operating systems such as openSUSE Leap offer to include add-on products in the instal-
lation process. In case the add-on product installation source is provided via network, no special
VM Guest configuration is needed. If it is provided via CD/DVD or ISO image, it is necessary
to provide the VM Guest installation system with both, the standard installation medium and
an image for the add-on product.

In case you are using the GUI-based installation, select Customize Configuration Before Install in
the last step of the wizard and add the add-on product ISO image via Add Hardware Storage.
Specify the path to the image and set the Device Type to CD-ROM.

If installing from the command line, you need to set up the virtual CD/DVD drives with the --
disk parameter rather than with --cdrom . The device that is specified rst is used for booting.
The following example will install SUSE Linux Enterprise Server 12 plus SDK:

tux > virt-install --name sles12+sdk --memory 1024 --disk size=10 \
--disk /virt/iso/SLES12.iso,device=cdrom \
--disk /virt/iso/SLES12_SDK.iso,device=cdrom \
--graphics vnc --os-variant sles12

29 Advanced Guest Installation Scenarios openSUSE Leap 15.0

9 Basic VM Guest Management

Most management tasks, such as starting or stopping a VM Guest, can either be done using the
graphical application Virtual Machine Manager or on the command line using virsh . Connect-
ing to the graphical console via VNC is only possible from a graphical user interface.

Note: Managing VM Guests on a Remote VM Host
Server
If started on a VM Host Server, the libvirt tools Virtual Machine Manager, virsh , and
virt-viewer can be used to manage VM Guests on the host. However, it is also possible
to manage VM Guests on a remote VM Host Server. This requires configuring remote
access for libvirt on the host. For instructions, see Chapter 10, Connecting and Authorizing.

To connect to such a remote host with Virtual Machine Manager, you need to set up a
connection as explained in Section 10.2.2, “Managing Connections with Virtual Machine Man-

ager”. If connecting to a remote host using virsh or virt-viewer , you need to speci-
fy a connection URI with the parameter -c (for example, virsh -c qemu+tls://sat-
urn.example.com/system or virsh -c xen+ssh://). The form of connection URI de-
pends on the connection type and the hypervisor—see Section 10.2, “Connecting to a VM

Host Server” for details.

Examples in this chapter are all listed without a connection URI.

9.1 Listing VM Guests

The VM Guest listing shows all VM Guests managed by libvirt on a VM Host Server.

9.1.1 Listing VM Guests with Virtual Machine Manager

The main window of the Virtual Machine Manager lists all VM Guests for each VM Host Server it
is connected to. Each VM Guest entry contains the machine's name, its status (Running, Paused,
or Shutoff) displayed as an icon and literally, and a CPU usage bar.

30 Listing VM Guests openSUSE Leap 15.0

9.1.2 Listing VM Guests with virsh

Use the command virsh list to get a list of VM Guests:

List all running guests

tux > virsh list

List all running and inactive guests

tux > virsh list --all

For more information and further options, see virsh help list or man 1 virsh .

9.2 Accessing the VM Guest via Console
VM Guests can be accessed via a VNC connection (graphical console) or, if supported by the
guest operating system, via a serial console.

9.2.1 Opening a Graphical Console

Opening a graphical console to a VM Guest lets you interact with the machine like a physical host
via a VNC connection. If accessing the VNC server requires authentication, you are prompted
to enter a user name (if applicable) and a password.

When you click into the VNC console, the cursor is “grabbed” and cannot be used outside the
console anymore. To release it, press Alt – Ctrl .

Tip: Seamless (Absolute) Cursor Movement
To prevent the console from grabbing the cursor and to enable seamless cursor move-
ment, add a tablet input device to the VM Guest. See Section 13.5, “Enabling Seamless and

Synchronized Mouse Pointer Movement” for more information.

Certain key combinations such as Ctrl – Alt – Del are interpreted by the host system and are
not passed to the VM Guest. To pass such key combinations to a VM Guest, open the Send
Key menu from the VNC window and choose the desired key combination entry. The Send Key

31 Listing VM Guests with virsh openSUSE Leap 15.0

menu is only available when using Virtual Machine Manager and virt-viewer . With Virtual
Machine Manager, you can alternatively use the “sticky key” feature as explained in Tip: Passing

Key Combinations to Virtual Machines.

Note: Supported VNC Viewers
Principally all VNC viewers can connect to the console of a VM Guest. However, if you
are using SASL authentication and/or TLS/SSL connection to access the guest, the options
are limited. Common VNC viewers such as tightvnc or tigervnc support neither SASL
authentication nor TLS/SSL. The only supported alternative to Virtual Machine Manager
and virt-viewer is Remmina (refer to Book “Reference”, Chapter 4 “Remote Access with

VNC”, Section 4.2 “Remmina: the Remote Desktop Client”).

9.2.1.1 Opening a Graphical Console with Virtual Machine Manager

1. In the Virtual Machine Manager, right-click a VM Guest entry.

2. Choose Open from the pop-up menu.

9.2.1.2 Opening a Graphical Console with virt-viewer

virt-viewer is a simple VNC viewer with added functionality for displaying VM Guest con-
soles. For example, it can be started in “wait” mode, where it waits for a VM Guest to start
before it connects. It also supports automatically reconnecting to a VM Guest that is rebooted.

virt-viewer addresses VM Guests by name, by ID or by UUID. Use virsh list --all to
get this data.

To connect to a guest that is running or paused, use either the ID, UUID, or name. VM Guests
that are shut o do not have an ID—you can only connect to them by UUID or name.

Connect to guest with the ID 8

tux > virt-viewer 8

Connect to the inactive guest named sles12 ; the connection window will open once the guest

starts

tux > virt-viewer --wait sles12

32 Opening a Graphical Console openSUSE Leap 15.0

With the --wait option, the connection will be upheld even if the VM Guest is not running
at the moment. When the guest starts, the viewer will be launched.

For more information, see virt-viewer --help or man 1 virt-viewer .

Note: Password Input on Remote connections with
SSH
When using virt-viewer to open a connection to a remote host via SSH, the SSH pass-
word needs to be entered twice. The rst time for authenticating with libvirt , the
second time for authenticating with the VNC server. The second password needs to be
provided on the command line where virt-viewer was started.

9.2.2 Opening a Serial Console

Accessing the graphical console of a virtual machine requires a graphical environment on the
client accessing the VM Guest. As an alternative, virtual machines managed with libvirt can also
be accessed from the shell via the serial console and virsh . To open a serial console to a VM
Guest named “sles12”, run the following command:

tux > virsh console sles12

virsh console takes two optional ags: --safe ensures exclusive access to the console, --
force disconnects any existing sessions before connecting. Both features need to be supported
by the guest operating system.

Being able to connect to a VM Guest via serial console requires that the guest operating system
supports serial console access and is properly supported. Refer to the guest operating system
manual for more information.

Tip: Enabling Serial Console Access for SUSE Linux
Enterprise and openSUSE Guests
Serial console access in SUSE Linux Enterprise and openSUSE is disabled by default. To
enable it, proceed as follows:

SLES 12 / openSUSE

Launch the YaST Boot Loader module and switch to the Kernel Parameters tab. Add
console=ttyS0 to the eld Optional Kernel Command Line Parameter.

33 Opening a Serial Console openSUSE Leap 15.0

SLES 11

Launch the YaST Boot Loader module and select the boot entry for which to activate
serial console access. Choose Edit and add console=ttyS0 to the eld Optional
Kernel Command Line Parameter. Additionally, edit /etc/inittab and uncomment
the line with the following content:

#S0:12345:respawn:/sbin/agetty -L 9600 ttyS0 vt102

9.3 Changing a VM Guest's State: Start, Stop, Pause

Starting, stopping or pausing a VM Guest can be done with either Virtual Machine Manager or
virsh . You can also configure a VM Guest to be automatically started when booting the VM
Host Server.

When shutting down a VM Guest, you may either shut it down gracefully, or force the shutdown.
The latter is equivalent to pulling the power plug on a physical host and is only recommended
if there are no alternatives. Forcing a shutdown may cause le system corruption and loss of
data on the VM Guest.

Tip: Graceful Shutdown
To be able to perform a graceful shutdown, the VM Guest must be configured to support
ACPI. If you have created the guest with the Virtual Machine Manager, ACPI should be
available in the VM Guest.

Depending on the guest operating system, availability of ACPI may not be sufficient to
perform a graceful shutdown. It is strongly recommended to test shutting down and re-
booting a guest before using it in production. openSUSE or SUSE Linux Enterprise Desk-
top, for example, can require PolKit authorization for shutdown and reboot. Make sure
this policy is turned o on all VM Guests.

If ACPI was enabled during a Windows XP/Windows Server 2003 guest installation, turn-
ing it on in the VM Guest configuration only is not sufficient. For more information, see:

https://support.microsoft.com/en-us/kb/314088

https://support.microsoft.com/en-us/kb/309283

34 Changing a VM Guest's State: Start, Stop, Pause openSUSE Leap 15.0

https://support.microsoft.com/en-us/kb/314088
https://support.microsoft.com/en-us/kb/309283

Regardless of the VM Guest's configuration, a graceful shutdown is always possible from
within the guest operating system.

9.3.1 Changing a VM Guest's State with Virtual Machine Manager

Changing a VM Guest's state can be done either from Virtual Machine Manager's main window,
or from a VNC window.

PROCEDURE 9.1: STATE CHANGE FROM THE VIRTUAL MACHINE MANAGER WINDOW

1. Right-click a VM Guest entry.

2. Choose Run, Pause, or one of the Shutdown options from the pop-up menu.

PROCEDURE 9.2: STATE CHANGE FROM THE VNC WINDOW

1. Open a VNC Window as described in Section 9.2.1.1, “Opening a Graphical Console with Virtual

Machine Manager”.

2. Choose Run, Pause, or one of the Shut Down options either from the toolbar or from the
Virtual Machine menu.

9.3.1.1 Automatically Starting a VM Guest

You can automatically start a guest when the VM Host Server boots. This feature is not enabled
by default and needs to be enabled for each VM Guest individually. There is no way to activate
it globally.

1. Double-click the VM Guest entry in Virtual Machine Manager to open its console.

2. Choose View Details to open the VM Guest configuration window.

3. Choose Boot Options and check Start virtual machine on host boot up.

4. Save the new configuration with Apply.

9.3.2 Changing a VM Guest's State with virsh
In the following examples, the state of a VM Guest named “sles12” is changed.

Start

35 Changing a VM Guest's State with Virtual Machine Manager openSUSE Leap 15.0

tux > virsh start sles12

Pause

tux > virsh suspend sles12

Resume (a Suspended VM Guest)

tux > virsh resume sles12

Reboot

tux > virsh reboot sles12

Graceful shutdown

tux > virsh shutdown sles12

Force shutdown

tux > virsh destroy sles12

Turn on automatic start

tux > virsh autostart sles12

Turn off automatic start

tux > virsh autostart --disable sles12

9.4 Saving and Restoring the State of a VM Guest
Saving a VM Guest preserves the exact state of the guest’s memory. The operation is similar
to hibernating a computer. A saved VM Guest can be quickly restored to its previously saved
running condition.

When saved, the VM Guest is paused, its current memory state is saved to disk, and then the
guest is stopped. The operation does not make a copy of any portion of the VM Guest’s virtual
disk. The amount of time taken to save the virtual machine depends on the amount of memory
allocated. When saved, a VM Guest’s memory is returned to the pool of memory available on
the VM Host Server.

The restore operation loads a VM Guest’s previously saved memory state le and starts it. The
guest is not booted but instead resumed at the point where it was previously saved. The operation
is similar to coming out of hibernation.

36 Saving and Restoring the State of a VM Guest openSUSE Leap 15.0

The VM Guest is saved to a state le. Make sure there is enough space on the partition you
are going to save to. For an estimation of the le size in megabytes to be expected, issue the
following command on the guest:

tux > free -mh | awk '/^Mem:/ {print $3}'

Warning: Always Restore Saved Guests
After using the save operation, do not boot or start the saved VM Guest. Doing so would
cause the machine's virtual disk and the saved memory state to get out of synchronization.
This can result in critical errors when restoring the guest.

To be able to work with a saved VM Guest again, use the restore operation. If you used
virsh to save a VM Guest, you cannot restore it using Virtual Machine Manager. In this
case, make sure to restore using virsh .

Important: Only for VM Guests with Disk Types
raw, qcow2
Saving and restoring VM Guests is only possible if the VM Guest is using a virtual disk
of the type raw (.img), or qcow2.

9.4.1 Saving/Restoring with Virtual Machine Manager

PROCEDURE 9.3: SAVING A VM GUEST

1. Open a VNC connection window to a VM Guest. Make sure the guest is running.

2. Choose Virtual Machine Shutdown Save.

PROCEDURE 9.4: RESTORING A VM GUEST

1. Open a VNC connection window to a VM Guest. Make sure the guest is not running.

2. Choose Virtual Machine Restore.
If the VM Guest was previously saved using Virtual Machine Manager, you will not be
offered an option to Run the guest. However, note the caveats on machines saved with
virsh outlined in Warning: Always Restore Saved Guests.

37 Saving/Restoring with Virtual Machine Manager openSUSE Leap 15.0

9.4.2 Saving and Restoring with virsh

Save a running VM Guest with the command virsh save and specify the le which it is saved
to.

Save the guest named opensuse13

tux > virsh save opensuse13 /virtual/saves/opensuse13.vmsav

Save the guest with the ID 37

tux > virsh save 37 /virtual/saves/opensuse13.vmsave

To restore a VM Guest, use virsh restore :

tux > virsh restore /virtual/saves/opensuse13.vmsave

9.5 Creating and Managing Snapshots
VM Guest snapshots are snapshots of the complete virtual machine including the state of CPU,
RAM, devices, and the content of all writable disks. To use virtual machine snapshots, all the
attached hard disks need to use the qcow2 disk image format, and at least one of them needs
to be writable.

Snapshots let you restore the state of the machine at a particular point in time. This is useful
when undoing a faulty configuration or the installation of a lot of packages. After starting a
snapshot that was created while the VM Guest was shut o, you will need to boot it. Any changes
written to the disk after that point in time will be lost when starting the snapshot.

Note
Snapshots are supported on KVM VM Host Servers only.

9.5.1 Terminology

There are several specific terms used to describe the types of snapshots:

Internal snapshots

38 Saving and Restoring with virsh openSUSE Leap 15.0

Snapshots that are saved into the qcow2 le of the original VM Guest. The le holds both
the saved state of the snapshot and the changes made since the snapshot was taken. The
main advantage of internal snapshots is that they are all stored in one le and therefore
it is easy to copy or move them across multiple machines.

External snapshots

When creating an external snapshot, the original qcow2 le is saved and made read-only,
while a new qcow2 le is created to hold the changes. The original le is sometimes called
a 'backing' or 'base' le, while the new le with all the changes is called an 'overlay' or
'derived' le. External snapshots are useful when performing backups of VM Guests. For
more information on external snapshots in QEMU, refer to Section 27.2.4, “Manipulate Disk

Images Effectively”.

Live snapshots

Snapshots created when the original VM Guest is running. Internal live snapshots support
saving the devices, and memory and disk states, while external live snapshots with virsh
support saving either the memory state, or the disk state, or both.

Offline snapshots

Snapshot created from a VM Guest that is shut o. This ensures data integrity as all the
guest's processes are stopped and no memory is in use.

9.5.2 Creating and Managing Snapshots with Virtual Machine
Manager

Important: Internal Snapshots Only
Virtual Machine Manager supports only internal snapshots, either live or offline.

To open the snapshot management view in Virtual Machine Manager, open the VNC window as
described in Section 9.2.1.1, “Opening a Graphical Console with Virtual Machine Manager”. Now either
choose View Snapshots or click Manage VM Snapshots in the toolbar.

39 Creating and Managing Snapshots with Virtual Machine Manager openSUSE Leap 15.0

The list of existing snapshots for the chosen VM Guest is displayed in the left-hand part of the
window. The snapshot that was last started is marked with a green tick. The right-hand part of
the window shows details of the snapshot currently marked in the list. These details include the
snapshot's title and time stamp, the state of the VM Guest at the time the snapshot was taken
and a description. Snapshots of running guests also include a screenshot. The Description can be
changed directly from this view. Other snapshot data cannot be changed.

9.5.2.1 Creating a Snapshot

To take a new snapshot of a VM Guest, proceed as follows:

1. Optionally, shut down the VM Guest if you want to create an offline snapshot.

2. Click Add in the bottom left corner of the VNC window.
The window Create Snapshot opens.

3. Provide a Name and, optionally, a description. The name cannot be changed after the
snapshot has been taken. To be able to identify the snapshot later easily, use a “speaking
name”.

4. Confirm with Finish.

40 Creating and Managing Snapshots with Virtual Machine Manager openSUSE Leap 15.0

9.5.2.2 Deleting a Snapshot

To delete a snapshot of a VM Guest, proceed as follows:

1. Click Delete in the bottom left corner of the VNC window.

2. Confirm the deletion with Yes.

9.5.2.3 Starting a Snapshot

To start a snapshot, proceed as follows:

1. Click Run in the bottom left corner of the VNC window.

2. Confirm the start with Yes.

9.5.3 Creating and Managing Snapshots with virsh
To list all existing snapshots for a domain (admin_server in the following), run the snap-
shot-list command:

tux > virsh snapshot-list --domain sle-ha-node1
 Name Creation Time State
--
 sleha_12_sp2_b2_two_node_cluster 2016-06-06 15:04:31 +0200 shutoff
 sleha_12_sp2_b3_two_node_cluster 2016-07-04 14:01:41 +0200 shutoff
 sleha_12_sp2_b4_two_node_cluster 2016-07-14 10:44:51 +0200 shutoff
 sleha_12_sp2_rc3_two_node_cluster 2016-10-10 09:40:12 +0200 shutoff
 sleha_12_sp2_gmc_two_node_cluster 2016-10-24 17:00:14 +0200 shutoff
 sleha_12_sp3_gm_two_node_cluster 2017-08-02 12:19:37 +0200 shutoff
 sleha_12_sp3_rc1_two_node_cluster 2017-06-13 13:34:19 +0200 shutoff
 sleha_12_sp3_rc2_two_node_cluster 2017-06-30 11:51:24 +0200 shutoff
 sleha_15_b6_two_node_cluster 2018-02-07 15:08:09 +0100 shutoff
 sleha_15_rc1_one-node 2018-03-09 16:32:38 +0100 shutoff

The snapshot that was last started is shown with the snapshot-current command:

tux > virsh snapshot-current --domain admin_server
Basic installation incl. SMT for CLOUD4

Details about a particular snapshot can be obtained by running the snapshot-info command:

tux > virsh snapshot-info --domain admin_server \
 -name "Basic installation incl. SMT for CLOUD4"
Name: Basic installation incl. SMT for CLOUD4

41 Creating and Managing Snapshots with virsh openSUSE Leap 15.0

Domain: admin_server
Current: yes
State: shutoff
Location: internal
Parent: Basic installation incl. SMT for CLOUD3-HA
Children: 0
Descendants: 0
Metadata: yes

9.5.3.1 Creating Internal Snapshots

To take an internal snapshot of a VM Guest, either a live or offline, use the snapshot-create-as
command as follows:

tux > virsh snapshot-create-as --domain admin_server 1 --name "Snapshot 1" 2 \
--description "First snapshot" 3

1 Domain name. Mandatory.

2 Name of the snapshot. It is recommended to use a “speaking name”, since that makes it
easier to identify the snapshot. Mandatory.

3 Description for the snapshot. Optional.

9.5.3.2 Creating External Snapshots

With virsh , you can take external snapshots of the guest's memory state, disk state, or both.

To take both live and offline external snapshot of the guest's disk, specify the --disk-only
option:

tux > virsh snapshot-create-as --domain admin_server --name \
 "Offline external snapshot" --disk-only

You can specify the --diskspec option to control how the external les are created:

tux > virsh snapshot-create-as --domain admin_server --name \
 "Offline external snapshot" \
 --disk-only --diskspec vda,snapshot=external,file=/path/to/snapshot_file

To take a live external snapshot of the guest's memory, specify the --live and --memspec
options:

tux > virsh snapshot-create-as --domain admin_server --name \
 "Offline external snapshot" --live \

42 Creating and Managing Snapshots with virsh openSUSE Leap 15.0

 --memspec snapshot=external,file=/path/to/snapshot_file

To take a live external snapshot of both the guest's disk and memory states, combine the --
live , --diskspec , and --memspec options:

tux > virsh snapshot-create-as --domain admin_server --name \
 "Offline external snapshot" --live \
 --memspec snapshot=external,file=/path/to/snapshot_file
 --diskspec vda,snapshot=external,file=/path/to/snapshot_file

Refer to the SNAPSHOT COMMANDS section in man 1 virsh for more details.

9.5.3.3 Deleting a Snapshot

To delete a snapshot of a VM Guest and restore the disk space it occupies, use the snap-
shot-delete command:

tux > virsh snapshot-delete --domain admin_server --snapshotname "Snapshot 2"

9.5.3.4 Starting a Snapshot

To start a snapshot, use the snapshot-revert command:

tux > virsh snapshot-revert --domain admin_server --snapshotname "Snapshot 1"

To start the current snapshot (the one the VM Guest was started o), it is sufficient to use --
current rather than specifying the snapshot name:

tux > virsh snapshot-revert --domain admin_server --current

9.6 Deleting a VM Guest
By default, deleting a VM Guest using virsh removes only its XML configuration. Since attached
storage is not deleted by default, you can reuse it with another VM Guest. With Virtual Machine
Manager, you can also delete a guest's storage les as well—this will completely erase the guest.

9.6.1 Deleting a VM Guest with Virtual Machine Manager

1. In the Virtual Machine Manager, right-click a VM Guest entry.

43 Deleting a VM Guest openSUSE Leap 15.0

2. From the context menu, choose Delete.

3. A confirmation window opens. Clicking Delete will permanently erase the VM Guest. The
deletion is not recoverable.
You can also permanently delete the guest's virtual disk by activating Delete Associated
Storage Files. The deletion is not recoverable either.

9.6.2 Deleting a VM Guest with virsh
To delete a VM Guest, it needs to be shut down rst. It is not possible to delete a running guest.
For information on shutting down, see Section 9.3, “Changing a VM Guest's State: Start, Stop, Pause”.

To delete a VM Guest with virsh , run virsh undefine VM_NAME .

tux > virsh undefine sles12

There is no option to automatically delete the attached storage les. If they are managed by
libvirt, delete them as described in Section 11.2.4, “Deleting Volumes from a Storage Pool”.

9.7 Migrating VM Guests
One of the major advantages of virtualization is that VM Guests are portable. When a VM Host
Server needs to go down for maintenance, or when the host gets overloaded, the guests can
easily be moved to another VM Host Server. KVM and Xen even support “live” migrations during
which the VM Guest is constantly available.

9.7.1 Migration Requirements

To successfully migrate a VM Guest to another VM Host Server, the following requirements need
to be met:

It is recommended that the source and destination systems have the same architecture.

Storage devices must be accessible from both machines (for example, via NFS or iSCSI)
and must be configured as a storage pool on both machines. For more information, see
Chapter 11, Managing Storage.
This is also true for CD-ROM or floppy images that are connected during the move. How-
ever, you can disconnect them prior to the move as described in Section 13.8, “Ejecting and

Changing Floppy or CD/DVD-ROM Media with Virtual Machine Manager”.

44 Deleting a VM Guest with virsh openSUSE Leap 15.0

libvirtd needs to run on both VM Host Servers and you must be able to open a remote
libvirt connection between the target and the source host (or vice versa). Refer to Sec-

tion 10.3, “Configuring Remote Connections” for details.

If a firewall is running on the target host, ports need to be opened to allow the migration.
If you do not specify a port during the migration process, libvirt chooses one from the
range 49152:49215. Make sure that either this range (recommended) or a dedicated port
of your choice is opened in the firewall on the target host.

Host and target machine should be in the same subnet on the network, otherwise network-
ing will not work after the migration.

All VM Host Servers participating in migration must have the same UID for the qemu user
and the same GIDs for the kvm, qemu, and libvirt groups.

No running or paused VM Guest with the same name must exist on the target host. If a
shut down machine with the same name exists, its configuration will be overwritten.

All CPU models except host cpu model are supported when migrating VM Guests.

SATA disk device type is not migratable.

File system pass-through feature is incompatible with migration.

The VM Host Server and VM Guest need to have proper timekeeping installed. See Chap-

ter 15, VM Guest Clock Settings.

No physical devices can be passed from host to guest. Live migration is currently not sup-
ported when using devices with PCI pass-through or SR-IOV. If live migration needs to be
supported, you need to use software virtualization (paravirtualization or full virtualiza-
tion).

Cache mode setting is an important setting for migration. See: Section 14.5, “Effect of Cache

Modes on Live Migration”.

The image directory should be located in the same path on both hosts.

All hosts should be on the same level of microcode (especially the spectre microcode up-
dates). This can be achieved by installing the latest updates of SUSE Linux Enterprise Serv-
er on all hosts.

45 Migration Requirements openSUSE Leap 15.0

9.7.2 Migrating with Virtual Machine Manager

When using the Virtual Machine Manager to migrate VM Guests, it does not matter on which
machine it is started. You can start Virtual Machine Manager on the source or the target host
or even on a third host. In the latter case you need to be able to open remote connections to
both the target and the source host.

1. Start Virtual Machine Manager and establish a connection to the target or the source host.
If the Virtual Machine Manager was started neither on the target nor the source host,
connections to both hosts need to be opened.

2. Right-click the VM Guest that you want to migrate and choose Migrate. Make sure the
guest is running or paused—it is not possible to migrate guests that are shut down.

Tip: Increasing the Speed of the Migration
To increase the speed of the migration somewhat, pause the VM Guest. This is the
equivalent of the former so-called “offline migration” option of Virtual Machine
Manager.

3. Choose a New Host for the VM Guest. If the desired target host does not show up, make
sure that you are connected to the host.
To change the default options for connecting to the remote host, under Connection, set the
Mode, and the target host's Address (IP address or host name) and Port. If you specify a
Port, you must also specify an Address.
Under Advanced options, choose whether the move should be permanent (default) or tem-
porary, using Temporary move.
Additionally, there is the option Allow unsafe, which allows migrating without disabling
the cache of the VM Host Server. This can speed up the migration but only works when
the current configuration allows for a consistent view of the VM Guest storage without
using cache="none" / 0_DIRECT .

Note: Bandwidth Option
In recent versions of Virtual Machine Manager, the option of setting a bandwidth for
the migration has been removed. To set a specific bandwidth, use virsh instead.

4. To perform the migration, click Migrate.

46 Migrating with Virtual Machine Manager openSUSE Leap 15.0

When the migration is complete, the Migrate window closes and the VM Guest is now listed
on the new host in the Virtual Machine Manager window. The original VM Guest will still
be available on the target host (in shut down state).

9.7.3 Migrating with virsh
To migrate a VM Guest with virsh migrate , you need to have direct or remote shell access to
the VM Host Server, because the command needs to be run on the host. The migration command
looks like this:

tux > virsh migrate [OPTIONS] VM_ID_or_NAME CONNECTION_URI [--migrateuri
 tcp://REMOTE_HOST:PORT]

The most important options are listed below. See virsh help migrate for a full list.

--live

Does a live migration. If not specified, the guest will be paused during the migration (“of-
fline migration”).

--suspend

Does an offline migration and does not restart the VM Guest on the target host.

--persistent

By default a migrated VM Guest will be migrated temporarily, so its configuration is au-
tomatically deleted on the target host if it is shut down. Use this switch to make the mi-
gration persistent.

--undefinesource

When specified, the VM Guest definition on the source host will be deleted after a successful
migration (however, virtual disks attached to this guest will not be deleted).

The following examples use mercury.example.com as the source system and jupiter.exam-
ple.com as the target system; the VM Guest's name is opensuse131 with Id 37 .

Offline migration with default parameters

tux > virsh migrate 37 qemu+ssh://tux@jupiter.example.com/system

Transient live migration with default parameters

tux > virsh migrate --live opensuse131 qemu+ssh://tux@jupiter.example.com/system

47 Migrating with virsh openSUSE Leap 15.0

Persistent live migration; delete VM definition on source

tux > virsh migrate --live --persistent --undefinesource 37 \
qemu+tls://tux@jupiter.example.com/system

Offline migration using port 49152

tux > virsh migrate opensuse131 qemu+ssh://tux@jupiter.example.com/system \
--migrateuri tcp://@jupiter.example.com:49152

Note: Transient Compared to Persistent Migrations
By default virsh migrate creates a temporary (transient) copy of the VM Guest on the
target host. A shut down version of the original guest description remains on the source
host. A transient copy will be deleted from the server after it is shut down.

To create a permanent copy of a guest on the target host, use the switch --persistent .
A shut down version of the original guest description remains on the source host, too. Use
the option --undefinesource together with --persistent for a “real” move where a
permanent copy is created on the target host and the version on the source host is deleted.

It is not recommended to use --undefinesource without the --persistent option,
since this will result in the loss of both VM Guest definitions when the guest is shut down
on the target host.

9.7.4 Step-by-Step Example

9.7.4.1 Exporting the Storage

First you need to export the storage, to share the Guest image between host. This can be done
by an NFS server. In the following example we want to share the /volume1/VM directory for all
machines that are on the network 10.0.1.0/24. We will use a SUSE Linux Enterprise NFS server.
As root user, edit the /etc/exports le and add:

/volume1/VM 10.0.1.0/24 (rw,sync,no_root_squash)

You need to restart the NFS server:

tux > sudo systemctl restart nfsserver
tux > sudo exportfs

48 Step-by-Step Example openSUSE Leap 15.0

/volume1/VM 10.0.1.0/24

9.7.4.2 Defining the Pool on the Target Hosts

On each host where you want to migrate the VM Guest, the pool must be defined to be able
to access the volume (that contains the Guest image). Our NFS server IP address is 10.0.1.99,
its share is the /volume1/VM directory, and we want to get it mounted in the /var/lib/lib-
virt/images/VM directory. The pool name will be VM. To define this pool, create a VM.xml
le with the following content:

<pool type='netfs'>
 <name>VM</name>
 <source>
 <host name='10.0.1.99'/>
 <dir path='/volume1/VM'/>
 <format type='auto'/>
 </source>
 <target>
 <path>/var/lib/libvirt/images/VM</path>
 <permissions>
 <mode>0755</mode>
 <owner>-1</owner>
 <group>-1</group>
 </permissions>
 </target>
 </pool>

Then load it into libvirt using the pool-define command:

root # virsh pool-define VM.xml

An alternative way to define this pool is to use the virsh command:

root # virsh pool-define-as VM --type netfs --source-host 10.0.1.99 \
 --source-path /volume1/VM --target /var/lib/libvirt/images/VM
Pool VM created

The following commands assume that you are in the interactive shell of virsh which can also
be reached by using the command virsh without any arguments. Then the pool can be set to
start automatically at host boot (autostart option):

virsh # pool-autostart VM
Pool VM marked as autostarted

49 Step-by-Step Example openSUSE Leap 15.0

If you want to disable the autostart:

virsh # pool-autostart VM --disable
Pool VM unmarked as autostarted

Check if the pool is present:

virsh # pool-list --all
 Name State Autostart

 default active yes
 VM active yes

virsh # pool-info VM
Name: VM
UUID: 42efe1b3-7eaa-4e24-a06a-ba7c9ee29741
State: running
Persistent: yes
Autostart: yes
Capacity: 2,68 TiB
Allocation: 2,38 TiB
Available: 306,05 GiB

Warning: Pool Needs to Exist on All Target Hosts
Remember: this pool must be defined on each host where you want to be able to migrate
your VM Guest.

9.7.4.3 Creating the Volume

The pool has been defined—now we need a volume which will contain the disk image:

virsh # vol-create-as VM sled12.qcow12 8G --format qcow2
Vol sled12.qcow12 created

The volume names shown will be used later to install the guest with virt-install.

9.7.4.4 Creating the VM Guest

Let's create a openSUSE Leap VM Guest with the virt-install command. The VM pool will
be specified with the --disk option, cache=none is recommended if you do not want to use
the --unsafe option while doing the migration.

50 Step-by-Step Example openSUSE Leap 15.0

root # virt-install --connect qemu:///system --virt-type kvm --name \
 sled12 --memory 1024 --disk vol=VM/sled12.qcow2,cache=none --cdrom \
 /mnt/install/ISO/SLE-12-Desktop-DVD-x86_64-Build0327-Media1.iso --graphics \
 vnc --os-variant sled12
Starting install...
Creating domain...

9.7.4.5 Migrate the VM Guest

Everything is ready to do the migration now. Run the migrate command on the VM Host Server
that is currently hosting the VM Guest, and choose the destination.

virsh # migrate --live sled12 --verbose qemu+ssh://IP/Hostname/system
Password:
Migration: [12 %]

9.8 Monitoring

9.8.1 Monitoring with Virtual Machine Manager

After starting Virtual Machine Manager and connecting to the VM Host Server, a CPU usage
graph of all the running guests is displayed.

It is also possible to get information about disk and network usage with this tool, however, you
must rst activate this in Preferences:

1. Run virt-manager .

2. Select Edit Preferences.

3. Change the tab from General to Polling.

4. Activate the check boxes for the kind of activity you want to see: Poll Disk I/O, Poll Network
I/O, and Poll Memory stats.

5. If desired, also change the update interval using Update status every n seconds.

6. Close the Preferences dialog.

51 Monitoring openSUSE Leap 15.0

7. Activate the graphs that should be displayed under View Graph.

Afterward, the disk and network statistics are also displayed in the main window of the Virtual
Machine Manager.

More precise data is available from the VNC window. Open a VNC window as described in
Section 9.2.1, “Opening a Graphical Console”. Choose Details from the toolbar or the View menu. The
statistics are displayed from the Performance entry of the left-hand tree menu.

9.8.2 Monitoring with virt-top
virt-top is a command line tool similar to the well-known process monitoring tool top . virt-
top uses libvirt and therefore is capable of showing statistics for VM Guests running on differ-
ent hypervisors. It is recommended to use virt-top instead of hypervisor-specific tools like
xentop .

By default virt-top shows statistics for all running VM Guests. Among the data that is dis-
played is the percentage of memory used (%MEM) and CPU (%CPU) and the uptime of the guest
(TIME). The data is updated regularly (every three seconds by default). The following shows
the output on a VM Host Server with seven VM Guests, four of them inactive:

virt-top 13:40:19 - x86_64 8/8CPU 1283MHz 16067MB 7.6% 0.5%
7 domains, 3 active, 3 running, 0 sleeping, 0 paused, 4 inactive D:0 O:0 X:0
CPU: 6.1% Mem: 3072 MB (3072 MB by guests)

 ID S RDRQ WRRQ RXBY TXBY %CPU %MEM TIME NAME
 7 R 123 1 18K 196 5.8 6.0 0:24.35 sled12_sp1
 6 R 1 0 18K 0 0.2 6.0 0:42.51 sles12_sp1
 5 R 0 0 18K 0 0.1 6.0 85:45.67 opensuse_leap
 - (Ubuntu_1410)
 - (debian_780)
 - (fedora_21)
 - (sles11sp3)

By default the output is sorted by ID. Use the following key combinations to change the sort eld:

Shift – P : CPU usage
Shift – M : Total memory allocated by the guest
Shift – T : Time
Shift – I : ID

To use any other eld for sorting, press Shift – F and select a eld from the list. To toggle
the sort order, use Shift – R .

52 Monitoring with virt-top openSUSE Leap 15.0

virt-top also supports different views on the VM Guests data, which can be changed on-the-
y by pressing the following keys:

0 : default view
1 : show physical CPUs
2 : show network interfaces
3 : show virtual disks

virt-top supports more hot keys to change the view of the data and many command line
switches that affect the behavior of the program. For more information, see man 1 virt-top .

9.8.3 Monitoring with kvm_stat

kvm_stat can be used to trace KVM performance events. It monitors /sys/kernel/debug/kvm ,
so it needs the debugfs to be mounted. On openSUSE Leap it should be mounted by default. In
case it is not mounted, use the following command:

tux > sudo mount -t debugfs none /sys/kernel/debug

kvm_stat can be used in three different modes:

kvm_stat # update in 1 second intervals
kvm_stat -1 # 1 second snapshot
kvm_stat -l > kvmstats.log # update in 1 second intervals in log format
 # can be imported to a spreadsheet

EXAMPLE 9.1: TYPICAL OUTPUT OF kvm_stat

kvm statistics

 efer_reload 0 0
 exits 11378946 218130
 fpu_reload 62144 152
 halt_exits 414866 100
 halt_wakeup 260358 50
 host_state_reload 539650 249
 hypercalls 0 0
 insn_emulation 6227331 173067
 insn_emulation_fail 0 0
 invlpg 227281 47
 io_exits 113148 18
 irq_exits 168474 127
 irq_injections 482804 123

53 Monitoring with kvm_stat openSUSE Leap 15.0

 irq_window 51270 18
 largepages 0 0
 mmio_exits 6925 0
 mmu_cache_miss 71820 19
 mmu_flooded 35420 9
 mmu_pde_zapped 64763 20
 mmu_pte_updated 0 0
 mmu_pte_write 213782 29
 mmu_recycled 0 0
 mmu_shadow_zapped 128690 17
 mmu_unsync 46 -1
 nmi_injections 0 0
 nmi_window 0 0
 pf_fixed 1553821 857
 pf_guest 1018832 562
 remote_tlb_flush 174007 37
 request_irq 0 0
 signal_exits 0 0
 tlb_flush 394182 148

See http://clalance.blogspot.com/2009/01/kvm-performance-tools.html for further information
on how to interpret these values.

54 Monitoring with kvm_stat openSUSE Leap 15.0

http://clalance.blogspot.com/2009/01/kvm-performance-tools.html

10 Connecting and Authorizing

Managing several VM Host Servers, each hosting multiple VM Guests, quickly becomes difficult.
One benefit of libvirt is the ability to connect to several VM Host Servers at once, providing
a single interface to manage all VM Guests and to connect to their graphical console.

To ensure only authorized users can connect, libvirt offers several connection types (via TLS,
SSH, Unix sockets, and TCP) that can be combined with different authorization mechanisms
(socket, PolKit, SASL and Kerberos).

10.1 Authentication

The power to manage VM Guests and to access their graphical console is something that should
be restricted to a well defined circle of persons. To achieve this goal, you can use the following
authentication techniques on the VM Host Server:

Access control for Unix sockets with permissions and group ownership. This method is
available for libvirtd connections only.

Access control for Unix sockets with PolKit. This method is available for local libvirtd
connections only.

User name and password authentication with SASL (Simple Authentication and Security
Layer). This method is available for both, libvirtd and VNC connections. Using SASL
does not require real user accounts on the server, since it uses its own database to store
user names and passwords. Connections authenticated with SASL are encrypted.

Kerberos authentication. This method, available for libvirtd connections only, is not
covered in this manual. Refer to http://libvirt.org/auth.html#ACL_server_kerberos for de-
tails.

Single password authentication. This method is available for VNC connections only.

55 Authentication openSUSE Leap 15.0

http://libvirt.org/auth.html#ACL_server_kerberos

Important: Authentication for libvirtd and VNC
need to be configured separately
Access to the VM Guest's management functions (via libvirtd) on the one hand, and to
its graphical console on the other hand, always needs to be configured separately. When
restricting access to the management tools, these restrictions do not automatically apply
to VNC connections!

When accessing VM Guests from remote via TLS/SSL connections, access can be indirectly con-
trolled on each client by restricting read permissions to the certificate's key le to a certain
group. See Section 10.3.2.5, “Restricting Access (Security Considerations)” for details.

10.1.1 libvirtd Authentication

libvirtd authentication is configured in /etc/libvirt/libvirtd.conf . The configuration
made here applies to all libvirt tools such as the Virtual Machine Manager or virsh .

libvirt offers two sockets: a read-only socket for monitoring purposes and a read-write socket
to be used for management operations. Access to both sockets can be configured independently.
By default, both sockets are owned by root.root . Default access permissions on the read-write
socket are restricted to the user root (0700) and fully open on the read-only socket (0777).

In the following instructions, you will learn how to configure access permissions for the read-
write socket. The same instructions also apply to the read-only socket. All configuration steps
need to be carried out on the VM Host Server.

Note: Default Authentication Settings on
openSUSE Leap
The default authentication method on openSUSE Leap is access control for Unix sockets.
Only the user root may authenticate. When accessing the libvirt tools as a non-root
user directly on the VM Host Server, you need to provide the root password through
PolKit once. You are then granted access for the current and for future sessions.

Alternatively, you can configure libvirt to allow “system” access to non-privileged
users. See Section 10.2.1, ““system” Access for Non-Privileged Users” for details.

56 libvirtd Authentication openSUSE Leap 15.0

RECOMMENDED AUTHORIZATION METHODS

Local Connections

Section 10.1.1.2, “Local Access Control for Unix Sockets with PolKit”

Section 10.1.1.1, “Access Control for Unix Sockets with Permissions and Group Ownership”

Remote Tunnel over SSH

Section 10.1.1.1, “Access Control for Unix Sockets with Permissions and Group Ownership”

Remote TLS/SSL Connection

Section 10.1.1.3, “User name and Password Authentication with SASL”

none (access controlled on the client side by restricting access to the certificates)

10.1.1.1 Access Control for Unix Sockets with Permissions and Group
Ownership

To grant access for non- root accounts, configure the sockets to be owned and accessible by a
certain group (libvirt in the following example). This authentication method can be used for
local and remote SSH connections.

1. In case it does not exist, create the group that should own the socket:

tux > sudo groupadd libvirt

Important: Group Needs to Exist
The group must exist prior to restarting libvirtd . If not, the restart will fail.

2. Add the desired users to the group:

tux > sudo usermod --append --groups libvirt tux

3. Change the configuration in /etc/libvirt/libvirtd.conf as follows:

unix_sock_group = "libvirt" 1

unix_sock_rw_perms = "0770" 2

auth_unix_rw = "none" 3

1 Group ownership will be set to group libvirt .

57 libvirtd Authentication openSUSE Leap 15.0

2 Sets the access permissions for the socket (srwxrwx---).

3 Disables other authentication methods (PolKit or SASL). Access is solely controlled
by the socket permissions.

4. Restart libvirtd :

tux > sudo systemctl start libvirtd

10.1.1.2 Local Access Control for Unix Sockets with PolKit

Access control for Unix sockets with PolKit is the default authentication method on openSUSE
Leap for non-remote connections. Therefore, no libvirt configuration changes are needed.
With PolKit authorization enabled, permissions on both sockets default to 0777 and each ap-
plication trying to access a socket needs to authenticate via PolKit.

Important: PolKit Authentication for Local
Connections Only
Authentication with PolKit can only be used for local connections on the VM Host Server
itself, since PolKit does not handle remote authentication.

Two policies for accessing libvirt 's sockets exist:

org.libvirt.unix.monitor: accessing the read-only socket

org.libvirt.unix.manage: accessing the read-write socket

By default, the policy for accessing the read-write socket is to authenticate with the root pass-
word once and grant the privilege for the current and for future sessions.

To grant users access to a socket without having to provide the root password, you need to
create a rule in /etc/polkit-1/rules.d . Create the le /etc/polkit-1/rules.d/10-grant-
libvirt with the following content to grant access to the read-write socket to all members of
the group libvirt :

polkit.addRule(function(action, subject) {
 if (action.id == "org.libvirt.unix.manage" && subject.isInGroup("libvirt")) {
 return polkit.Result.YES;
 }

58 libvirtd Authentication openSUSE Leap 15.0

});

10.1.1.3 User name and Password Authentication with SASL

SASL provides user name and password authentication and data encryption (digest-md5, by
default). Since SASL maintains its own user database, the users do not need to exist on the VM
Host Server. SASL is required by TCP connections and on top of TLS/SSL connections.

Important: Plain TCP and SASL with digest-md5
Encryption
Using digest-md5 encryption on an otherwise not encrypted TCP connection does not
provide enough security for production environments. It is recommended to only use it
in testing environments.

Tip: SASL Authentication on Top of TLS/SSL
Access from remote TLS/SSL connections can be indirectly controlled on the client side by
restricting access to the certificate's key le. However, this might prove error-prone when
dealing with many clients. Using SASL with TLS adds security by additionally controlling
access on the server side.

To configure SASL authentication, proceed as follows:

1. Change the configuration in /etc/libvirt/libvirtd.conf as follows:

a. To enable SASL for TCP connections:

auth_tcp = "sasl"

b. To enable SASL for TLS/SSL connections:

auth_tls = "sasl"

2. Restart libvirtd :

tux > sudo systemctl restart libvirtd

59 libvirtd Authentication openSUSE Leap 15.0

3. The libvirt SASL configuration le is located at /etc/sasl2/libvirtd.conf . Normally,
there is no need to change the defaults. However, if using SASL on top of TLS, you may
turn o session encryption to avoid additional overhead (TLS connections are already
encrypted) by commenting the line setting the mech_list parameter. Only do this for
TLS/SASL, for TCP connections this parameter must be set to digest-md5.

#mech_list: digest-md5

4. By default, no SASL users are configured, so no logins are possible. Use the following
commands to manage users:

Add the user tux

saslpasswd2 -a libvirt tux

Delete the user tux

saslpasswd2 -a libvirt -d tux

List existing users

sasldblistusers2 -f /etc/libvirt/passwd.db

Tip: virsh and SASL Authentication
When using SASL authentication, you will be prompted for a user name and password
every time you issue a virsh command. Avoid this by using virsh in shell mode.

10.1.2 VNC Authentication

Since access to the graphical console of a VM Guest is not controlled by libvirt , but rather
by the specific hypervisor, it is always necessary to additionally configure VNC authentication.
The main configuration le is /etc/libvirt/<hypervisor>.conf . This section describes the
QEMU/KVM hypervisor, so the target configuration le is /etc/libvirt/qemu.conf .

60 VNC Authentication openSUSE Leap 15.0

Note: VNC Authentication for Xen
In contrast to KVM and LXC, Xen does not yet offer more sophisticated VNC authentication
than setting a password on a per VM basis. See the <graphics type='vnc'... libvirt
configuration option below.

Two authentication types are available: SASL and single password authentication. If you are
using SASL for libvirt authentication, it is strongly recommended to use it for VNC authen-
tication as well—it is possible to share the same database.

A third method to restrict access to the VM Guest is to enable the use of TLS encryption on
the VNC server. This requires the VNC clients to have access to x509 client certificates. By
restricting access to these certificates, access can indirectly be controlled on the client side. Refer
to Section 10.3.2.4.2, “VNC over TLS/SSL: Client Configuration” for details.

10.1.2.1 User name and Password Authentication with SASL

SASL provides user name and password authentication and data encryption. Since SASL main-
tains its own user database, the users do not need to exist on the VM Host Server. As with SASL
authentication for libvirt , you may use SASL on top of TLS/SSL connections. Refer to Sec-

tion 10.3.2.4.2, “VNC over TLS/SSL: Client Configuration” for details on configuring these connections.

To configure SASL authentication for VNC, proceed as follows:

1. Create a SASL configuration le. It is recommended to use the existing libvirt le. If
you have already configured SASL for libvirt and are planning to use the same settings
including the same user name and password database, a simple link is suitable:

tux > sudo ln -s /etc/sasl2/libvirt.conf /etc/sasl2/qemu.conf

If are setting up SASL for VNC only or you are planning to use a different configuration
than for libvirt , copy the existing le to use as a template:

tux > sudo cp /etc/sasl2/libvirt.conf /etc/sasl2/qemu.conf

Then edit it according to your needs.

2. Change the configuration in /etc/libvirt/qemu.conf as follows:

vnc_listen = "0.0.0.0"

61 VNC Authentication openSUSE Leap 15.0

vnc_sasl = 1
sasldb_path: /etc/libvirt/qemu_passwd.db

The rst parameter enables VNC to listen on all public interfaces (rather than to the local
host only), and the second parameter enables SASL authentication.

3. By default, no SASL users are configured, so no logins are possible. Use the following
commands to manage users:

Add the user tux

tux > saslpasswd2 -f /etc/libvirt/qemu_passwd.db -a qemu tux

Delete the user tux

tux > saslpasswd2 -f /etc/libvirt/qemu_passwd.db -a qemu -d tux

List existing users

tux > sasldblistusers2 -f /etc/libvirt/qemu_passwd.db

4. Restart libvirtd :

tux > sudo systemctl restart libvirtd

5. Restart all VM Guests that have been running prior to changing the configuration. VM
Guests that have not been restarted will not use SASL authentication for VNC connects.

Note: Supported VNC Viewers
SASL authentication is currently supported by Virtual Machine Manager and virt-view-
er . Both of these viewers also support TLS/SSL connections.

10.1.2.2 Single Password Authentication

Access to the VNC server may also be controlled by setting a VNC password. You can either
set a global password for all VM Guests or set individual passwords for each guest. The latter
requires to edit the VM Guest's configuration les.

62 VNC Authentication openSUSE Leap 15.0

Note: Always Set a Global Password
If you are using single password authentication, it is good practice to set a global password
even if setting passwords for each VM Guest. This will always leave your virtual machines
protected with a “fallback” password if you forget to set a per-machine password. The
global password will only be used if no other password is set for the machine.

PROCEDURE 10.1: SETTING A GLOBAL VNC PASSWORD

1. Change the configuration in /etc/libvirt/qemu.conf as follows:

vnc_listen = "0.0.0.0"
vnc_password = "PASSWORD"

The rst parameter enables VNC to listen on all public interfaces (rather than to the lo-
cal host only), and the second parameter sets the password. The maximum length of the
password is eight characters.

2. Restart libvirtd :

tux > sudo systemctl restart libvirtd

3. Restart all VM Guests that have been running prior to changing the configuration. VM
Guests that have not been restarted will not use password authentication for VNC connects.

PROCEDURE 10.2: SETTING A VM GUEST SPECIFIC VNC PASSWORD

1. Change the configuration in /etc/libvirt/qemu.conf as follows to enable VNC to listen
on all public interfaces (rather than to the local host only).

vnc_listen = "0.0.0.0"

2. Open the VM Guest's XML configuration le in an editor. Replace VM_NAME in the follow-
ing example with the name of the VM Guest. The editor that is used defaults to $EDITOR .
If that variable is not set, vi is used.

tux > virsh edit VM_NAME

3. Search for the element <graphics> with the attribute type='vnc' , for example:

<graphics type='vnc' port='-1' autoport='yes'/>

63 VNC Authentication openSUSE Leap 15.0

4. Add the passwd=PASSWORD attribute, save the le and exit the editor. The maximum
length of the password is eight characters.

<graphics type='vnc' port='-1' autoport='yes' passwd='PASSWORD'/>

5. Restart libvirtd :

tux > sudo systemctl restart libvirtd

6. Restart all VM Guests that have been running prior to changing the configuration. VM
Guests that have not been restarted will not use password authentication for VNC connects.

Warning: Security of the VNC Protocol
The VNC protocol is not considered to be safe. Although the password is sent encrypted,
it might be vulnerable when an attacker can sni both the encrypted password and the
encryption key. Therefore, it is recommended to use VNC with TLS/SSL or tunneled over
SSH. virt-viewer , Virtual Machine Manager and Remmina (refer to Book “Reference”,

Chapter 4 “Remote Access with VNC”, Section 4.2 “Remmina: the Remote Desktop Client”) support
both methods.

10.2 Connecting to a VM Host Server
To connect to a hypervisor with libvirt , you need to specify a uniform resource identifier
(URI). This URI is needed with virsh and virt-viewer (except when working as root on the
VM Host Server) and is optional for the Virtual Machine Manager. Although the latter can be
called with a connection parameter (for example, virt-manager -c qemu:///system), it also
offers a graphical interface to create connection URIs. See Section 10.2.2, “Managing Connections

with Virtual Machine Manager” for details.

HYPERVISOR 1 +PROTOCOL 2 ://USER@REMOTE 3 /CONNECTION_TYPE 4

1 Specify the hypervisor. openSUSE Leap currently supports the following hypervisors: test
(dummy for testing), qemu (KVM), and xen (Xen). This parameter is mandatory.

2 When connecting to a remote host, specify the protocol here. It can be one of: ssh (con-
nection via SSH tunnel), tcp (TCP connection with SASL/Kerberos authentication), tls
(TLS/SSL encrypted connection with authentication via x509 certificates).

64 Connecting to a VM Host Server openSUSE Leap 15.0

3 When connecting to a remote host, specify the user name and the remote host name. If
no user name is specified, the user name that has called the command ($USER) is used.
See below for more information. For TLS connections, the host name needs to be specified
exactly as in the x509 certificate.

4 When connecting to the QEMU/KVM hypervisor, two connection types are accepted: sys-
tem for full access rights, or session for restricted access. Since session access is not
supported on openSUSE Leap, this documentation focuses on system access.

EXAMPLE HYPERVISOR CONNECTION URIS

test:///default

Connect to the local dummy hypervisor. Useful for testing.

qemu:///system or xen:///system

Connect to the QEMU/Xen hypervisor on the local host having full access (type system).

qemu+ssh://tux@mercury.example.com/system or xen+ssh://tux@mercury.exam-

ple.com/system

Connect to the QEMU/Xen hypervisor on the remote host mercury.example.com. The con-
nection is established via an SSH tunnel.

qemu+tls://saturn.example.com/system or xen+tls://saturn.example.com/system

Connect to the QEMU/Xen hypervisor on the remote host mercury.example.com. The con-
nection is established using TLS/SSL.

For more details and examples, refer to the libvirt documentation at http://lib-

virt.org/uri.html .

Note: User Names in URIs
A user name needs to be specified when using Unix socket authentication (regardless of
whether using the user/password authentication scheme or PolKit). This applies to all
SSH and local connections.

There is no need to specify a user name when using SASL authentication (for TCP or TLS
connections) or when doing no additional server-side authentication for TLS connections.
With SASL the user name will not be evaluated—you will be prompted for an SASL user/
password combination in any case.

65 Connecting to a VM Host Server openSUSE Leap 15.0

http://libvirt.org/uri.html
http://libvirt.org/uri.html

10.2.1 “system” Access for Non-Privileged Users

As mentioned above, a connection to the QEMU hypervisor can be established using two differ-
ent protocols: session and system . A “session” connection is spawned with the same privi-
leges as the client program. Such a connection is intended for desktop virtualization, since it
is restricted (for example no USB/PCI device assignments, no virtual network setup, limited
remote access to libvirtd).

The “system” connection intended for server virtualization has no functional restrictions but
is, by default, only accessible by root . However, with the addition of the DAC (Discretionary
Access Control) driver to libvirt it is now possible to grant non-privileged users “system”
access. To grant “system” access to the user tux , proceed as follows:

PROCEDURE 10.3: GRANTING “SYSTEM” ACCESS TO A REGULAR USER

1. Enable access via Unix sockets as described in Section 10.1.1.1, “Access Control for Unix Sockets

with Permissions and Group Ownership”. In that example access to libvirt is granted to all
members of the group libvirt and tux made a member of this group. This ensures that
tux can connect using virsh or Virtual Machine Manager.

2. Edit /etc/libvirt/qemu.conf and change the configuration as follows:

user = "tux"
group = "libvirt"
dynamic_ownership = 1

This ensures that the VM Guests are started by tux and that resources bound to the guest
(for example virtual disks) can be accessed and modified by tux .

3. Make tux a member of the group kvm :

tux > sudo usermod --append --groups kvm tux

This step is needed to grant access to /dev/kvm , which is required to start VM Guests.

4. Restart libvirtd :

tux > sudo systemctl restart libvirtd

66 “system” Access for Non-Privileged Users openSUSE Leap 15.0

10.2.2 Managing Connections with Virtual Machine Manager

The Virtual Machine Manager uses a Connection for every VM Host Server it manages. Each
connection contains all VM Guests on the respective host. By default, a connection to the local
host is already configured and connected.

All configured connections are displayed in the Virtual Machine Manager main window. Active
connections are marked with a small triangle, which you can click to fold or unfold the list of
VM Guests for this connection.

Inactive connections are listed gray and are marked with Not Connected . Either double-click
or right-click it and choose Connect from the context menu. You can also Delete an existing
connection from this menu.

Note: Editing Existing Connections
It is not possible to edit an existing connection. To change a connection, create a new one
with the desired parameters and delete the “old” one.

To add a new connection in the Virtual Machine Manager, proceed as follows:

1. Choose File Add Connection

2. Choose the host's Hypervisor (Xen or QEMU/KVM)

3. (Optional) To set up a remote connection, choose Connect to remote host. For more infor-
mation, see Section 10.3, “Configuring Remote Connections”.
In case of a remote connection, specify the Hostname of the remote machine in the format
USERNAME@REMOTE _HOST .

Important: Specifying a User Name
There is no need to specify a user name for TCP and TLS connections: In these cases,
it will not be evaluated. However, in the case of SSH connections, specifying a user
name is necessary when you want to connect as a user other than root .

4. If you do not want the connection to be automatically started when starting the Virtual
Machine Manager, deactivate Autoconnect.

5. Finish the configuration by clicking Connect.

67 Managing Connections with Virtual Machine Manager openSUSE Leap 15.0

10.3 Configuring Remote Connections

A major benefit of libvirt is the ability to manage VM Guests on different remote hosts from
a central location. This section gives detailed instructions on how to configure server and client
to allow remote connections.

10.3.1 Remote Tunnel over SSH (qemu+ssh or xen+ssh)

Enabling a remote connection that is tunneled over SSH on the VM Host Server only requires the
ability to accept SSH connections. Make sure the SSH daemon is started (systemctl status
sshd) and that the ports for service SSH are opened in the firewall.

User authentication for SSH connections can be done using traditional le user/group ownership
and permissions as described in Section 10.1.1.1, “Access Control for Unix Sockets with Permissions and

Group Ownership”. Connecting as user tux (qemu+ssh://tuxsIVname;/system or xen+ssh://
tuxsIVname;/system) works out of the box and does not require additional configuration on
the libvirt side.

When connecting via SSH qemu+ssh://USER@SYSTEM or xen+ssh://USER@SYSTEM you need to
provide the password for USER . This can be avoided by copying your public key to ~USER/.ssh/
authorized_keys on the VM Host Server as explained in Book “Security Guide”, Chapter 15 “SSH:

Secure Network Operations”, Section 15.5.2 “Copying an SSH Key”. Using an ssh-agent on the machine
from which you are connecting adds even more convenience. For more information, see Book

“Security Guide”, Chapter 15 “SSH: Secure Network Operations”, Section 15.5.3 “Using the ssh-agent”.

10.3.2 Remote TLS/SSL Connection with x509 Certificate (qemu
+tls or xen+tls)

Using TCP connections with TLS/SSL encryption and authentication via x509 certificates is much
more complicated to set up than SSH, but it is a lot more scalable. Use this method if you need
to manage several VM Host Servers with a varying number of administrators.

68 Configuring Remote Connections openSUSE Leap 15.0

10.3.2.1 Basic Concept

TLS (Transport Layer Security) encrypts the communication between two computers by using
certificates. The computer starting the connection is always considered the “client”, using a
“client certificate”, while the receiving computer is always considered the “server”, using a
“server certificate”. This scenario applies, for example, if you manage your VM Host Servers
from a central desktop.

If connections are initiated from both computers, each needs to have a client and a server cer-
tificate. This is the case, for example, if you migrate a VM Guest from one host to another.

Each x509 certificate has a matching private key le. Only the combination of certificate and
private key le can identify itself correctly. To assure that a certificate was issued by the assumed
owner, it is signed and issued by a central certificate called certificate authority (CA). Both the
client and the server certificates must be issued by the same CA.

Important: User Authentication
Using a remote TLS/SSL connection only ensures that two computers are allowed to
communicate in a certain direction. Restricting access to certain users can indirectly be
achieved on the client side by restricting access to the certificates. For more information,
see Section 10.3.2.5, “Restricting Access (Security Considerations)”.

libvirt also supports user authentication on the server with SASL. For more informa-
tion, see Section 10.3.2.6, “Central User Authentication with SASL for TLS Sockets”.

10.3.2.2 Configuring the VM Host Server

The VM Host Server is the machine receiving connections. Therefore, the server certificates need
to be installed. The CA certificate needs to be installed, too. When the certificates are in place,
TLS support can be turned on for libvirt .

1. Create the server certificate and export it together with the CA certificate as described in
Section A.1, “Generating x509 Client/Server Certificates”.

2. Create the following directories on the VM Host Server:

tux > sudo mkdir -p /etc/pki/CA/ /etc/pki/libvirt/private/

69

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls) openSUSE Leap

15.0

Install the certificates as follows:

tux > sudo /etc/pki/CA/cacert.pem
tux > sudo /etc/pki/libvirt/servercert.pem
tux > sudo /etc/pki/libvirt/private/serverkey.pem

Important: Restrict Access to Certificates
Make sure to restrict access to certificates as explained in Section 10.3.2.5, “Restricting

Access (Security Considerations)”.

3. Enable TLS support by editing /etc/libvirt/libvirtd.conf and setting listen_tls
= 1 . Restart libvirtd :

tux > sudo systemctl restart libvirtd

4. By default, libvirt uses the TCP port 16514 for accepting secure TLS connections. Open
this port in the firewall.

Important: Restarting libvirtd with TLS enabled
If you enable TLS for libvirt , the server certificates need to be in place, otherwise
restarting libvirtd will fail. You also need to restart libvirtd in case you change the
certificates.

10.3.2.3 Configuring the Client and Testing the Setup

The client is the machine initiating connections. Therefore the client certificates need to be
installed. The CA certificate needs to be installed, too.

1. Create the client certificate and export it together with the CA certificate as described in
Section A.1, “Generating x509 Client/Server Certificates”.

2. Create the following directories on the client:

tux > sudo mkdir -p /etc/pki/CA/ /etc/pki/libvirt/private/

Install the certificates as follows:

tux > sudo /etc/pki/CA/cacert.pem

70

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls) openSUSE Leap

15.0

tux > sudo /etc/pki/libvirt/clientcert.pem
tux > sudo /etc/pki/libvirt/private/clientkey.pem

Important: Restrict Access to Certificates
Make sure to restrict access to certificates as explained in Section 10.3.2.5, “Restricting

Access (Security Considerations)”.

3. Test the client/server setup by issuing the following command. Replace mercury.exam-
ple.com with the name of your VM Host Server. Specify the same fully qualified host
name as used when creating the server certificate.

#QEMU/KVM
virsh -c qemu+tls://mercury.example.com/system list --all

#Xen
virsh -c xen+tls://mercury.example.com/system list --all

If your setup is correct, you will see a list of all VM Guests registered with libvirt on
the VM Host Server.

10.3.2.4 Enabling VNC for TLS/SSL connections

Currently, VNC communication over TLS is only supported by a few tools. Common VNC viewers
such as tightvnc or tigervnc do not support TLS/SSL. The only supported alternative to
Virtual Machine Manager and virt-viewer is remmina (refer to Book “Reference”, Chapter 4

“Remote Access with VNC”, Section 4.2 “Remmina: the Remote Desktop Client”).

10.3.2.4.1 VNC over TLS/SSL: VM Host Server Configuration

To access the graphical console via VNC over TLS/SSL, you need to configure the VM Host
Server as follows:

1. Open ports for the service VNC in your firewall.

2. Create a directory /etc/pki/libvirt-vnc and link the certificates into this directory
as follows:

tux > sudo mkdir -p /etc/pki/libvirt-vnc && cd /etc/pki/libvirt-vnc

71

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls) openSUSE Leap

15.0

tux > sudo ln -s /etc/pki/CA/cacert.pem ca-cert.pem
tux > sudo ln -s /etc/pki/libvirt/servercert.pem server-cert.pem
tux > sudo ln -s /etc/pki/libvirt/private/serverkey.pem server-key.pem

3. Edit /etc/libvirt/qemu.conf and set the following parameters:

vnc_listen = "0.0.0.0"
 vnc_tls = 1
 vnc_tls_x509_verify = 1

4. Restart the libvirtd :

tux > sudo systemctl restart libvirtd

Important: VM Guests Need to be Restarted
The VNC TLS setting is only set when starting a VM Guest. Therefore, you need
to restart all machines that have been running prior to making the configuration
change.

10.3.2.4.2 VNC over TLS/SSL: Client Configuration

The only action needed on the client side is to place the x509 client certificates in a location
recognized by the client of choice. Unfortunately, Virtual Machine Manager and virt-viewer
expect the certificates in a different location. Virtual Machine Manager can either read from a
system-wide location applying to all users, or from a per-user location. Remmina (refer to Book

“Reference”, Chapter 4 “Remote Access with VNC”, Section 4.2 “Remmina: the Remote Desktop Client”)
asks for the location of certificates when initializing the connection to the remote VNC session.

Virtual Machine Manager (virt-manager)

To connect to the remote host, Virtual Machine Manager requires the setup explained in
Section 10.3.2.3, “Configuring the Client and Testing the Setup”. To be able to connect via VNC,
the client certificates also need to be placed in the following locations:

System-wide location

/etc/pki/CA/cacert.pem

/etc/pki/libvirt-vnc/clientcert.pem

/etc/pki/libvirt-vnc/private/clientkey.pem

72

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls) openSUSE Leap

15.0

Per-user location

/etc/pki/CA/cacert.pem

~/.pki/libvirt-vnc/clientcert.pem

~/.pki/libvirt-vnc/private/clientkey.pem

virt-viewer

virt-viewer only accepts certificates from a system-wide location:

/etc/pki/CA/cacert.pem

/etc/pki/libvirt-vnc/clientcert.pem

/etc/pki/libvirt-vnc/private/clientkey.pem

Important: Restrict Access to Certificates
Make sure to restrict access to certificates as explained in Section 10.3.2.5, “Restricting Access

(Security Considerations)”.

10.3.2.5 Restricting Access (Security Considerations)

Each x509 certificate consists of two pieces: the public certificate and a private key. A client
can only authenticate using both pieces. Therefore, any user that has read access to the client
certificate and its private key can access your VM Host Server. On the other hand, an arbitrary
machine equipped with the full server certificate can pretend to be the VM Host Server. Since
this is probably not desirable, access to at least the private key les needs to be restricted as
much as possible. The easiest way to control access to a key le is to use access permissions.

Server Certificates

Server certificates need to be readable for QEMU processes. On openSUSE Leap QEMU,
processes started from libvirt tools are owned by root , so it is sufficient if the root
can read the certificates:

tux > chmod 700 /etc/pki/libvirt/private/
tux > chmod 600 /etc/pki/libvirt/private/serverkey.pem

If you change the ownership for QEMU processes in /etc/libvirt/qemu.conf , you also
need to adjust the ownership of the key le.

System Wide Client Certificates

73

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls) openSUSE Leap

15.0

To control access to a key le that is available system-wide, restrict read access to a certain
group, so that only members of that group can read the key le. In the following example, a
group libvirt is created, and group ownership of the clientkey.pem le and its parent
directory is set to libvirt . Afterward, the access permissions are restricted to owner and
group. Finally the user tux is added to the group libvirt , and thus can access the key
le.

CERTPATH="/etc/pki/libvirt/"
create group libvirt
groupadd libvirt
change ownership to user root and group libvirt
chown root.libvirt $CERTPATH/private $CERTPATH/clientkey.pem
restrict permissions
chmod 750 $CERTPATH/private
chmod 640 $CERTPATH/private/clientkey.pem
add user tux to group libvirt
usermod --append --groups libvirt tux

Per-User Certificates

User-specific client certificates for accessing the graphical console of a VM Guest via VNC
need to be placed in the user's home directory in ~/.pki . Contrary to SSH, for example,
the VNC viewer using these certificates do not check the access permissions of the private
key le. Therefore, it is solely the user's responsibility to make sure the key le is not
readable by others.

10.3.2.5.1 Restricting Access from the Server Side

By default, every client that is equipped with appropriate client certificates may connect to a
VM Host Server accepting TLS connections. Therefore, it is possible to use additional server-side
authentication with SASL as described in Section 10.1.1.3, “User name and Password Authentication

with SASL”.

It is also possible to restrict access with a whitelist of DNs (distinguished names), so only clients
with a certificate matching a DN from the list can connect.

Add a list of allowed DNs to tls_allowed_dn_list in /etc/libvirt/libvirtd.conf . This
list may contain wild cards. Do not specify an empty list, since that would result in refusing
all connections.

tls_allowed_dn_list = [
 "C=US,L=Provo,O=SUSE Linux Products GmbH,OU=*,CN=venus.example.com,EMAIL=*",

74

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls) openSUSE Leap

15.0

 "C=DE,L=Nuremberg,O=SUSE Linux Products GmbH,OU=Documentation,CN=*"]

Get the distinguished name of a certificate with the following command:

tux > certtool -i --infile /etc/pki/libvirt/clientcert.pem | grep "Subject:"

Restart libvirtd after having changed the configuration:

tux > sudo systemctl restart libvirtd

10.3.2.6 Central User Authentication with SASL for TLS Sockets

A direct user authentication via TLS is not possible—this is handled indirectly on each client via
the read permissions for the certificates as explained in Section 10.3.2.5, “Restricting Access (Security

Considerations)”. However, if a central, server-based user authentication is needed, libvirt also
allows to use SASL (Simple Authentication and Security Layer) on top of TLS for direct user
authentication. See Section 10.1.1.3, “User name and Password Authentication with SASL” for config-
uration details.

10.3.2.7 Troubleshooting

10.3.2.7.1 Virtual Machine Manager/virsh Cannot Connect to Server

Check the following in the given order:

Is it a firewall issue (TCP port 16514 needs to be open on the server)?
Is the client certificate (certificate and key) readable by the user that has started Virtual Machine
Manager/ virsh ?
Has the same full qualified host name as in the server certificate been specified with the con-
nection?
Is TLS enabled on the server (listen_tls = 1)?
Has libvirtd been restarted on the server?

10.3.2.7.2 VNC Connection fails

Ensure that you can connect to the remote server using Virtual Machine Manager. If so, check
whether the virtual machine on the server has been started with TLS support. The virtual ma-
chine's name in the following example is sles .

75

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls) openSUSE Leap

15.0

tux > ps ax | grep qemu | grep "\-name sles" | awk -F" -vnc " '{ print FS $2 }'

If the output does not begin with a string similar to the following, the machine has not been
started with TLS support and must be restarted.

 -vnc 0.0.0.0:0,tls,x509verify=/etc/pki/libvirt

76

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls) openSUSE Leap

15.0

11 Managing Storage

When managing a VM Guest on the VM Host Server itself, you can access the complete le
system of the VM Host Server to attach or create virtual hard disks or to attach existing images
to the VM Guest. However, this is not possible when managing VM Guests from a remote host.
For this reason, libvirt supports so called “Storage Pools”, which can be accessed from remote
machines.

Tip: CD/DVD ISO images
To be able to access CD/DVD ISO images on the VM Host Server from remote, they also
need to be placed in a storage pool.

libvirt knows two different types of storage: volumes and pools.

Storage Volume

A storage volume is a storage device that can be assigned to a guest—a virtual disk or
a CD/DVD/floppy image. Physically (on the VM Host Server) it can be a block device (a
partition, a logical volume, etc.) or a le.

Storage Pool

A storage pool is a storage resource on the VM Host Server that can be used for storing
volumes, similar to network storage for a desktop machine. Physically it can be one of
the following types:

File System Directory (dir)

A directory for hosting image les. The les can be either one of the supported disk
formats (raw, or qcow2), or ISO images.

Physical Disk Device (disk)

Use a complete physical disk as storage. A partition is created for each volume that
is added to the pool.

Pre-Formatted Block Device (fs)

Specify a partition to be used in the same way as a le system directory pool (a
directory for hosting image les). The only difference to using a le system directory
is that libvirt takes care of mounting the device.

iSCSI Target (iscsi)

77 openSUSE Leap 15.0

Set up a pool on an iSCSI target. You need to have been logged in to the volume
once before, to use it with libvirt . Use the YaST iSCSI Initiator to detect and log in
to a volume. Volume creation on iSCSI pools is not supported, instead each existing
Logical Unit Number (LUN) represents a volume. Each volume/LUN also needs a
valid (empty) partition table or disk label before you can use it. If missing, use fdisk
to add it:

~ # fdisk -cu /dev/disk/by-path/ip-192.168.2.100:3260-iscsi-
iqn.2010-10.com.example:[...]-lun-2
Device contains neither a valid DOS partition table, nor Sun, SGI
or OSF disklabel
Building a new DOS disklabel with disk identifier 0xc15cdc4e.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

LVM Volume Group (logical)

Use an LVM volume group as a pool. You may either use a predefined volume group,
or create a group by specifying the devices to use. Storage volumes are created as
partitions on the volume.

Warning: Deleting the LVM-Based Pool
When the LVM-based pool is deleted in the Storage Manager, the volume group
is deleted as well. This results in a non-recoverable loss of all data stored on
the pool!

Multipath Devices (mpath)

At the moment, multipathing support is limited to assigning existing devices to the
guests. Volume creation or configuring multipathing from within libvirt is not
supported.

Network Exported Directory (netfs)

78 openSUSE Leap 15.0

Specify a network directory to be used in the same way as a le system directory
pool (a directory for hosting image les). The only difference to using a le system
directory is that libvirt takes care of mounting the directory. Supported protocols
are NFS and GlusterFS.

SCSI Host Adapter (scsi)

Use an SCSI host adapter in almost the same way as an iSCSI target. We recommend
to use a device name from /dev/disk/by-* rather than /dev/sdX . The latter can
change (for example, when adding or removing hard disks). Volume creation on iSCSI
pools is not supported. Instead, each existing LUN (Logical Unit Number) represents
a volume.

Warning: Security Considerations
To avoid data loss or data corruption, do not attempt to use resources such as LVM volume
groups, iSCSI targets, etc., that are also used to build storage pools on the VM Host Server.
There is no need to connect to these resources from the VM Host Server or to mount them
on the VM Host Server— libvirt takes care of this.

Do not mount partitions on the VM Host Server by label. Under certain circumstances it is
possible that a partition is labeled from within a VM Guest with a name already existing
on the VM Host Server.

11.1 Managing Storage with Virtual Machine Manager

The Virtual Machine Manager provides a graphical interface—the Storage Manager—to manage
storage volumes and pools. To access it, either right-click a connection and choose Details, or
highlight a connection and choose Edit Connection Details. Select the Storage tab.

79 Managing Storage with Virtual Machine Manager openSUSE Leap 15.0

11.1.1 Adding a Storage Pool

To add a storage pool, proceed as follows:

1. Click Add in the bottom left corner. The dialog Add a New Storage Pool appears.

2. Provide a Name for the pool (consisting of alphanumeric characters and _-.) and select
a Type. Proceed with Forward.

80 Adding a Storage Pool openSUSE Leap 15.0

3. Specify the required details in the following window. The data that needs to be entered
depends on the type of pool you are creating:

Typedir

Target Path: Specify an existing directory.

Typedisk

Target Path: The directory that hosts the devices. The default value /dev should
usually t.

Format: Format of the device's partition table. Using auto should usually work.
If not, get the required format by running the command parted -l on the
VM Host Server.

Source Path: Path to the device. It is recommended to use a device name from /
dev/disk/by-* rather than the simple /dev/sdX , since the latter can change
(for example, when adding or removing hard disks). You need to specify the
path that resembles the whole disk, not a partition on the disk (if existing).

Build Pool: Activating this option formats the device. Use with care—all data
on the device will be lost!

Typefs

Target Path: Mount point on the VM Host Server le system.

Format: File system format of the device. The default value auto should work.

Source Path: Path to the device le. It is recommended to use a device name
from /dev/disk/by-* rather than /dev/sdX , because the latter can change
(for example, when adding or removing hard disks).

Typeiscsi

Get the necessary data by running the following command on the VM Host Server:

tux > sudo iscsiadm --mode node

81 Adding a Storage Pool openSUSE Leap 15.0

It will return a list of iSCSI volumes with the following format. The elements in bold
text are required:

IP_ADDRESS:PORT,TPGT TARGET_NAME_(IQN)

Target Path: The directory containing the device le. Use /dev/disk/by-path
(default) or /dev/disk/by-id .

Host Name: Host name or IP address of the iSCSI server.

Source Path: The iSCSI target name (IQN).

Typelogical

Target Path: In case you use an existing volume group, specify the existing de-
vice path. When building a new LVM volume group, specify a device name in
the /dev directory that does not already exist.

Source Path: Leave empty when using an existing volume group. When creating
a new one, specify its devices here.

Build Pool: Only activate when creating a new volume group.

Typempath

Target Path: Support for multipathing is currently limited to making all multi-
path devices available. Therefore, specify an arbitrary string here that will then
be ignored. The path is required, otherwise the XML parser will fail.

Typenetfs

Target Path: Mount point on the VM Host Server le system.

Host Name: IP address or host name of the server exporting the network le
system.

Source Path: Directory on the server that is being exported.

Typescsi

82 Adding a Storage Pool openSUSE Leap 15.0

Target Path: The directory containing the device le. Use /dev/disk/by-path
(default) or /dev/disk/by-id .

Source Path: Name of the SCSI adapter.

Note: File Browsing
Using the le browser by clicking Browse is not possible when operating from re-
mote.

4. Click Finish to add the storage pool.

11.1.2 Managing Storage Pools

Virtual Machine Manager's Storage Manager lets you create or delete volumes in a pool. You
may also temporarily deactivate or permanently delete existing storage pools. Changing the
basic configuration of a pool is currently not supported by SUSE.

11.1.2.1 Starting, Stopping and Deleting Pools

The purpose of storage pools is to provide block devices located on the VM Host Server that can
be added to a VM Guest when managing it from remote. To make a pool temporarily inaccessible
from remote, click Stop in the bottom left corner of the Storage Manager. Stopped pools are
marked with State: Inactive and are grayed out in the list pane. By default, a newly created pool
will be automatically started On Boot of the VM Host Server.

To start an inactive pool and make it available from remote again, click Start in the bottom left
corner of the Storage Manager.

Note: A Pool's State Does not Affect Attached
Volumes
Volumes from a pool attached to VM Guests are always available, regardless of the pool's
state (Active (stopped) or Inactive (started)). The state of the pool solely affects the ability
to attach volumes to a VM Guest via remote management.

83 Managing Storage Pools openSUSE Leap 15.0

To permanently make a pool inaccessible, click Delete in the bottom left corner of the Storage
Manager. You may only delete inactive pools. Deleting a pool does not physically erase its
contents on VM Host Server—it only deletes the pool configuration. However, you need to be
extra careful when deleting pools, especially when deleting LVM volume group-based tools:

Warning: Deleting Storage Pools
Deleting storage pools based on local le system directories, local partitions or disks has
no effect on the availability of volumes from these pools currently attached to VM Guests.

Volumes located in pools of type iSCSI, SCSI, LVM group or Network Exported Directory
will become inaccessible from the VM Guest if the pool is deleted. Although the volumes
themselves will not be deleted, the VM Host Server will no longer have access to the
resources.

Volumes on iSCSI/SCSI targets or Network Exported Directory will become accessible
again when creating an adequate new pool or when mounting/accessing these resources
directly from the host system.

When deleting an LVM group-based storage pool, the LVM group definition will be erased
and the LVM group will no longer exist on the host system. The configuration is not
recoverable and all volumes from this pool are lost.

11.1.2.2 Adding Volumes to a Storage Pool

Virtual Machine Manager lets you create volumes in all storage pools, except in pools of types
Multipath, iSCSI, or SCSI. A volume in these pools is equivalent to a LUN and cannot be changed
from within libvirt .

1. A new volume can either be created using the Storage Manager or while adding a new
storage device to a VM Guest. In either case, select a storage pool from the left panel, then
click Create new volume.

2. Specify a Name for the image and choose an image format.
Note that SUSE currently only supports raw , or qcow2 images. The latter option is not
available on LVM group-based pools.

84 Managing Storage Pools openSUSE Leap 15.0

Next to Max Capacity, specify the amount maximum size that the disk image is allowed
to reach. Unless you are working with a qcow2 image, you can also set an amount for
Allocation that should be allocated initially. If both values differ, a sparse image le will
be created which grows on demand.
For qcow2 images, you can use a Backing Store (also called “backing le”) which consti-
tutes a base image. The newly created qcow2 image will then only record the changes
that are made to the base image.

3. Start the volume creation by clicking Finish.

11.1.2.3 Deleting Volumes From a Storage Pool

Deleting a volume can only be done from the Storage Manager, by selecting a volume and
clicking Delete Volume. Confirm with Yes.

Warning: Volumes Can Be Deleted Even While in
Use
Volumes can be deleted even if they are currently used in an active or inactive VM Guest.
There is no way to recover a deleted volume.

Whether a volume is used by a VM Guest is indicated in the Used By column in the Storage
Manager.

11.2 Managing Storage with virsh
Managing storage from the command line is also possible by using virsh . However, creating
storage pools is currently not supported by SUSE. Therefore, this section is restricted to docu-
menting functions like starting, stopping and deleting pools and volume management.

A list of all virsh subcommands for managing pools and volumes is available by running virsh
help pool and virsh help volume , respectively.

85 Managing Storage with virsh openSUSE Leap 15.0

11.2.1 Listing Pools and Volumes

List all pools currently active by executing the following command. To also list inactive pools,
add the option --all :

tux > virsh pool-list --details

Details about a specific pool can be obtained with the pool-info subcommand:

tux > virsh pool-info POOL

Volumes can only be listed per pool by default. To list all volumes from a pool, enter the fol-
lowing command.

tux > virsh vol-list --details POOL

At the moment virsh offers no tools to show whether a volume is used by a guest or not. The
following procedure describes a way to list volumes from all pools that are currently used by
a VM Guest.

PROCEDURE 11.1: LISTING ALL STORAGE VOLUMES CURRENTLY USED ON A VM HOST SERVER

1. Create an XSLT style sheet by saving the following content to a le, for example, ~/
libvirt/guest_storage_list.xsl:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="text()"/>
 <xsl:strip-space elements="*"/>
 <xsl:template match="disk">
 <xsl:text> </xsl:text>
 <xsl:value-of select="(source/@file|source/@dev|source/@dir)[1]"/>
 <xsl:text>
</xsl:text>
 </xsl:template>
</xsl:stylesheet>

2. Run the following commands in a shell. It is assumed that the guest's XML definitions are
all stored in the default location (/etc/libvirt/qemu). xsltproc is provided by the
package libxslt .

SSHEET="$HOME/libvirt/guest_storage_list.xsl"

86 Listing Pools and Volumes openSUSE Leap 15.0

cd /etc/libvirt/qemu
for FILE in *.xml; do
 basename $FILE .xml
 xsltproc $SSHEET $FILE
done

11.2.2 Starting, Stopping and Deleting Pools

Use the virsh pool subcommands to start, stop or delete a pool. Replace POOL with the pool's
name or its UUID in the following examples:

Stopping a Pool

tux > virsh pool-destroy POOL

Note: A Pool's State Does not Affect Attached
Volumes
Volumes from a pool attached to VM Guests are always available, regardless of the
pool's state (Active (stopped) or Inactive (started)). The state of the pool solely affects
the ability to attach volumes to a VM Guest via remote management.

Deleting a Pool

tux > virsh pool-delete POOL

Warning: Deleting Storage Pools
See Warning: Deleting Storage Pools

Starting a Pool

tux > virsh pool-start POOL

Enable Autostarting a Pool

tux > virsh pool-autostart POOL

87 Starting, Stopping and Deleting Pools openSUSE Leap 15.0

Only pools that are marked to autostart will automatically be started if the VM Host Server
reboots.

Disable Autostarting a Pool

tux > virsh pool-autostart POOL --disable

11.2.3 Adding Volumes to a Storage Pool

virsh offers two ways to add volumes to storage pools: either from an XML definition with
vol-create and vol-create-from or via command line arguments with vol-create-as .
The rst two methods are currently not supported by SUSE, therefore this section focuses on
the subcommand vol-create-as .

To add a volume to an existing pool, enter the following command:

tux > virsh vol-create-as POOL 1 NAME 2 12G --format 3 raw|qcow2 4 --allocation 4G 5

1 Name of the pool to which the volume should be added

2 Name of the volume

3 Size of the image, in this example 12 gigabytes. Use the suffixes k, M, G, T for kilobyte,
megabyte, gigabyte, and terabyte, respectively.

4 Format of the volume. SUSE currently supports raw , and qcow2 .

5 Optional parameter. By default virsh creates a sparse image le that grows on demand.
Specify the amount of space that should be allocated with this parameter (4 gigabytes in
this example). Use the suffixes k, M, G, T for kilobyte, megabyte, gigabyte, and terabyte,
respectively.
When not specifying this parameter, a sparse image le with no allocation will be gener-
ated. To create a non-sparse volume, specify the whole image size with this parameter
(would be 12G in this example).

11.2.3.1 Cloning Existing Volumes

Another way to add volumes to a pool is to clone an existing volume. The new instance is always
created in the same pool as the original.

tux > virsh vol-clone NAME_EXISTING_VOLUME 1 NAME_NEW_VOLUME 2 --pool POOL 3

88 Adding Volumes to a Storage Pool openSUSE Leap 15.0

1 Name of the existing volume that should be cloned

2 Name of the new volume

3 Optional parameter. libvirt tries to locate the existing volume automatically. If that fails,
specify this parameter.

11.2.4 Deleting Volumes from a Storage Pool

To permanently delete a volume from a pool, use the subcommand vol-delete :

tux > virsh vol-delete NAME --pool POOL

--pool is optional. libvirt tries to locate the volume automatically. If that fails, specify this
parameter.

Warning: No Checks Upon Volume Deletion
A volume will be deleted in any case, regardless of whether it is currently used in an
active or inactive VM Guest. There is no way to recover a deleted volume.

Whether a volume is used by a VM Guest can only be detected by using by the method
described in Procedure 11.1, “Listing all Storage Volumes Currently Used on a VM Host Server”.

11.2.5 Attaching Volumes to a VM Guest

After you create a volume as described in Section 11.2.3, “Adding Volumes to a Storage Pool”, you
can attach it to a virtual machine and use it as a hard disk:

tux > virsh attach-disk DOMAIN SOURCE_IMAGE_FILE TARGET_DISK_DEVICE

For example:

tux > virsh attach-disk sles12sp3 /virt/images/example_disk.qcow2 sda2

To check if the new disk is attached, inspect the result of the virsh dumpxml command:

root # virsh dumpxml sles12sp3
[...]
<disk type='file' device='disk'>

89 Deleting Volumes from a Storage Pool openSUSE Leap 15.0

 <driver name='qemu' type='raw'/>
 <source file='/virt/images/example_disk.qcow2'/>
 <backingStore/>
 <target dev='sda2' bus='scsi'/>
 <alias name='scsi0-0-0'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
</disk>
[...]

11.2.5.1 Hotplug or Persistent Change

You can attach disks to both active and inactive domains. The attachment is controlled by the
--live and --config options:

--live

Hotplugs the disk to an active domain. The attachment is not saved in the domain config-
uration. Using --live on an inactive domain is an error.

--config

Changes the domain configuration persistently. The attached disk is then available after
the next domain start.

--live --config

Hotplugs the disk and adds it to the persistent domain configuration.

Tip: virsh attach-device
virsh attach-device is the more generic form of virsh attach-disk . You can use
it to attach other types of devices to a domain.

11.2.6 Detaching Volumes from a VM Guest

To detach a disk from a domain, use virsh detach-disk :

root # virsh detach-disk DOMAIN TARGET_DISK_DEVICE

For example:

root # virsh detach-disk sles12sp3 sda2

90 Detaching Volumes from a VM Guest openSUSE Leap 15.0

You can control the attachment with the --live and --config options as described in Sec-

tion 11.2.5, “Attaching Volumes to a VM Guest”.

11.3 Locking Disk Files and Block Devices with
virtlockd
Locking block devices and disk les prevents concurrent writes to these resources from different
VM Guests. It provides protection against starting the same VM Guest twice, or adding the same
disk to two different virtual machines. This will reduce the risk of a virtual machine's disk image
becoming corrupted because of a wrong configuration.

The locking is controlled by a daemon called virtlockd . Since it operates independently from
the libvirtd daemon, locks will endure a crash or a restart of libvirtd . Locks will even
persist in the case of an update of the virtlockd itself, since it can re-execute itself. This ensures
that VM Guests do not need to be restarted upon a virtlockd update. virtlockd is supported
for KVM, QEMU, and Xen.

11.3.1 Enable Locking

Locking virtual disks is not enabled by default on openSUSE Leap. To enable and automatically
start it upon rebooting, perform the following steps:

1. Edit /etc/libvirt/qemu.conf and set

lock_manager = "lockd"

2. Start the virtlockd daemon with the following command:

tux > sudo systemctl start virtlockd

3. Restart the libvirtd daemon with:

tux > sudo systemctl restart libvirtd

4. Make sure virtlockd is automatically started when booting the system:

tux > sudo systemctl enable virtlockd

91 Locking Disk Files and Block Devices with virtlockd openSUSE Leap 15.0

11.3.2 Configure Locking

By default virtlockd is configured to automatically lock all disks configured for your VM
Guests. The default setting uses a "direct" lockspace, where the locks are acquired against the
actual le paths associated with the VM Guest <disk> devices. For example, flock(2) will
be called directly on /var/lib/libvirt/images/my-server/disk0.raw when the VM Guest
contains the following <disk> device:

<disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/var/lib/libvirt/images/my-server/disk0.raw'/>
 <target dev='vda' bus='virtio'/>
</disk>

The virtlockd configuration can be changed by editing the le /etc/libvirt/qemu-lock-
d.conf . It also contains detailed comments with further information. Make sure to activate
configuration changes by reloading virtlockd :

tux > sudo systemctl reload virtlockd

11.3.2.1 Enabling an Indirect Lockspace

The default configuration of virtlockd uses a “direct” lockspace. This means that the locks
are acquired against the actual le paths associated with the <disk> devices.

If the disk le paths are not accessible to all hosts, virtlockd can be configured to allow an
“indirect” lockspace. This means that a hash of the disk le path is used to create a le in the
indirect lockspace directory. The locks are then held on these hash les instead of the actual
disk le paths. Indirect lockspace is also useful if the le system containing the disk les does
not support fcntl() locks. An indirect lockspace is specified with the file_lockspace_dir
setting:

file_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"

92 Configure Locking openSUSE Leap 15.0

11.3.2.2 Enable Locking on LVM or iSCSI Volumes

When wanting to lock virtual disks placed on LVM or iSCSI volumes shared by several hosts,
locking needs to be done by UUID rather than by path (which is used by default). Furthermore,
the lockspace directory needs to be placed on a shared le system accessible by all hosts sharing
the volume. Set the following options for LVM and/or iSCSI:

lvm_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"
iscsi_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"

11.4 Online Resizing of Guest Block Devices
Sometimes you need to change—extend or shrink—the size of the block device used by your
guest system. For example, when the disk space originally allocated is no longer enough, it is
time to increase its size. If the guest disk resides on a logical volume, you can resize it while the
guest system is running. This is a big advantage over an offline disk resizing (see the virt-
resize command from the Section 16.3, “Guestfs Tools” package) as the service provided by the
guest is not interrupted by the resizing process. To resize a VM Guest disk, follow these steps:

PROCEDURE 11.2: ONLINE RESIZING OF GUEST DISK

1. Inside the guest system, check the current size of the disk (for example /dev/vda).

root # fdisk -l /dev/vda
Disk /dev/sda: 160.0 GB, 160041885696 bytes, 312581808 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

2. On the host, resize the logical volume holding the /dev/vda disk of the guest to the
required size, for example 200 GB.

root # lvresize -L 2048M /dev/mapper/vg00-home
Extending logical volume home to 2.00 GiB
Logical volume home successfully resized

3. On the host, resize the block device related to the disk /dev/mapper/vg00-home of the
guest. Note that you can nd the DOMAIN_ID with virsh list .

root # virsh blockresize --path /dev/vg00/home --size 2048M DOMAIN_ID

93 Online Resizing of Guest Block Devices openSUSE Leap 15.0

Block device '/dev/vg00/home' is resized

4. Check that the new disk size is accepted by the guest.

root # fdisk -l /dev/vda
Disk /dev/sda: 200.0 GB, 200052357120 bytes, 390727260 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

11.5 Sharing Directories between Host and Guests
(File System Pass-Through)
libvirt allows to share directories between host and guests using QEMU's le system pass-through
(also called VirtFS) feature. Such a directory can be also be accessed by several VM Guests at
once and therefore be used to exchange les between VM Guests.

Note: Windows Guests and File System Pass-
Through
Note that sharing directories between VM Host Server and Windows guests via File System
Pass-Through does not work, because Windows lacks the drivers required to mount the
shared directory.

To make a shared directory available on a VM Guest, proceed as follows:

1. Open the guest's console in Virtual Machine Manager and either choose View Details
from the menu or click Show virtual hardware details in the toolbar. Choose Add Hard-
ware Filesystem to open the Filesystem Passthrough dialog.

2. Driver allows you to choose between a Handle or Path base driver. The default setting is
Path. Mode lets you choose the security model, which influences the way le permissions
are set on the host. Three options are available:

Passthrough (Default)

Files on the le system are directly created with the client-user's credentials. This is
very similar to what NFSv3 is using.

Squash

94

Sharing Directories between Host and Guests (File System Pass-Through) openSUSE Leap

15.0

Same as Passthrough, but failure of privileged operations like chown are ignored.
This is required when KVM is not run with root privileges.

Mapped

Files are created with the le server's credentials (qemu.qemu). The user credentials
and the client-user's credentials are saved in extended attributes. This model is rec-
ommended when host and guest domains should be kept completely isolated.

3. Specify the path to the directory on the VM Host Server with Source Path. Enter a string at
Target Path that will be used as a tag to mount the shared directory. Note that the string
of this eld is a tag only, not a path on the VM Guest.

4. Apply the setting. If the VM Guest is currently running, you need to shut it down to apply
the new setting (rebooting the guest is not sufficient).

5. Boot the VM Guest. To mount the shared directory, enter the following command:

tux > sudo mount -t 9p -o trans=virtio,version=9p2000.L,rw TAG /MOUNT_POINT

To make the shared directory permanently available, add the following line to the /etc/
fstab le:

TAG /MOUNT_POINT 9p trans=virtio,version=9p2000.L,rw 0 0

11.6 Using RADOS Block Devices with libvirt
RADOS Block Devices (RBD) store data in a Ceph cluster. They allow snapshotting, replication,
and data consistency. You can use an RBD from your libvirt -managed VM Guests similarly
to how you use other block devices.

95 Using RADOS Block Devices with libvirt openSUSE Leap 15.0

12 Managing Networks

This chapter introduces common networking configurations supported by libvirt .
It does not depend on the hypervisor used. It is valid for all hypervisors support-
ed by libvirt , such as KVM or Xen. These setups can be achieved using both the
graphical interface of Virtual Machine Manager and the command line tool virsh .

There are two common network setups to provide a VM Guest with a network connection:

A virtual network for the guest

A network bridge over a host's physical network interface that the guest can use

12.1 Virtual Networks

A virtual network is a computer network which does not consist of a physical network link, but
rather uses a virtual network link. Each host can have several virtual networks defined. Virtual
networks are based on virtual devices that connect virtual machines inside a hypervisor. They
allow outgoing traffic translated to the LAN and are provided with DHCP and DNS services.
Virtual networks can be either isolated, or forwarded to a physical network.

Guests inside an isolated virtual network can communicate with each other, but cannot commu-
nicate with guests outside the virtual network. Also, guests not belonging to the isolated virtual
network cannot communicate with guests inside.

On the other hand, guests inside a forwarded (NAT, network address translation) virtual network
can make any outgoing network connection they request. Incoming connections are allowed
from VM Host Server, and from other guests connected to the same virtual network. All other
incoming connections are blocked by iptables rules.

A standard libvirt installation on openSUSE Leap already comes with a predefined virtual net-
work providing DHCP server and network address translation (NAT) named "default".

12.1.1 Managing Virtual Networks with Virtual Machine Manager

You can define, configure, and operate both isolated and forwarded virtual networks with Virtual
Machine Manager.

96 Virtual Networks openSUSE Leap 15.0

12.1.1.1 Defining Virtual Networks

1. Start Virtual Machine Manager. In the list of available connections, right-click the name of
the connection for which you need to configure the virtual network, and then select Details.

2. In the Connection Details window, click the Virtual Networks tab. You can see the list of
all virtual networks available for the current connection. On the right, there are details
of the selected virtual network.

FIGURE 12.1: CONNECTION DETAILS

3. To add a new virtual network, click Add.

4. Specify a name for the new virtual network and click Forward.

FIGURE 12.2: CREATE VIRTUAL NETWORK

5. To specify an IPv4 network address space definition, activate the relevant option and type
it into the Network text entry.

97 Managing Virtual Networks with Virtual Machine Manager openSUSE Leap 15.0

FIGURE 12.3: CREATE VIRTUAL NETWORK

6. libvirt can provide your virtual network with a DHCP server. If you need it, activate
Enable DHCPv4, then type the start and end IP address range of assignable addresses.

7. To enable static routing for the new virtual network, activate the relevant option and type
the network and gateway addresses.

8. Click Forward to proceed.

9. To specify IPv6-related options—network address space, DHCPv6 server, or static route
—activate Enable IPv6 network address space definition and activate the relevant options
and ll in the relevant boxes.

10. Click Forward to proceed.

11. Select whether you want isolated or forwarded virtual network.

98 Managing Virtual Networks with Virtual Machine Manager openSUSE Leap 15.0

FIGURE 12.4: CREATE VIRTUAL NETWORK

For forwarded networks, specify the network interface to which the requests will be
forwarded, and one of the forwarding modes: While NAT (network address translation)
remaps the virtual network address space and allows sharing a single IP address, Routed
connects the virtual switch to the physical host LAN with no network translation.

12. If you did not specify IPv6 network address space definition earlier, you can enable IPv6
internal routing between virtual machines.

13. (Optional) Optionally, change the DNS domain name.

14. Click Finish to create the new virtual network. On the VM Host Server, a new virtual net-
work bridge virbrX is available, which corresponds to the newly created virtual network.
You can check with bridge link . libvirt automatically adds iptables rules to allow
traffic to/from guests attached to the new virbr X device.

12.1.1.2 Starting Virtual Networks

To start a virtual network that is temporarily stopped, follow these steps:

1. Start Virtual Machine Manager. In the list of available connections, right-click the name of
the connection for which you need to configure the virtual network, and then select Details.

99 Managing Virtual Networks with Virtual Machine Manager openSUSE Leap 15.0

2. In the Connection Details window, click the Virtual Networks tab. You can see the list of all
virtual networks available for the current connection.

3. To start the virtual network, click Start.

12.1.1.3 Stopping Virtual Networks

To stop an active virtual network, follow these steps:

1. Start Virtual Machine Manager. In the list of available connections, right-click the name of
the connection for which you need to configure the virtual network, and then select Details.

2. In the Connection Details window, click the Virtual Networks tab. You can see the list of all
virtual networks available for the current connection.

3. Select the virtual network to be stopped, then click Stop.

12.1.1.4 Deleting Virtual Networks

To delete a virtual network from VM Host Server, follow these steps:

1. Start Virtual Machine Manager. In the list of available connections, right-click the name of
the connection for which you need to configure the virtual network, and then select Details.

2. In the Connection Details window, click the Virtual Networks tab. You can see the list of all
virtual networks available for the current connection.

3. Select the virtual network to be deleted, then click Delete.

12.1.1.5 Obtaining IP Addresses with nsswitch for NAT Networks (in KVM)

On VM Host Server, install libvirt-nss, which provides NSS support for libvirt:

tux > sudo zypper in libvirt-nss

Add libvirt to /etc/nsswitch.conf :

...
hosts: files libvirt mdns_minimal [NOTFOUND=return] dns

100 Managing Virtual Networks with Virtual Machine Manager openSUSE Leap 15.0

...

If NSCD is running, restart it:

tux > sudo systemctl restart nscd

Now you can reach the guest system by name from the host.

The NSS module has limited functionality. It reads /var/lib/libvirt/dnsmasq/*.status
les to nd the host name and corresponding IP addresses in a JSON record describing each
lease provided by dnsmasq . Host name translation can only be done on those VM Host Servers
using a libvirt-managed bridged network backed by dnsmasq .

For more information, see http://wiki.libvirt.org/page/NSS_module .

12.1.2 Managing Virtual Networks with virsh

You can manage libvirt -provided virtual networks with the virsh command line tool. To
view all network related virsh commands, run

tux > sudo virsh help network
Networking (help keyword 'network'):
 net-autostart autostart a network
 net-create create a network from an XML file
 net-define define (but don't start) a network from an XML
 file
 net-destroy destroy (stop) a network
 net-dumpxml network information in XML
 net-edit edit XML configuration for a network
 net-event Network Events
 net-info network information
 net-list list networks
 net-name convert a network UUID to network name
 net-start start a (previously defined) inactive network
 net-undefine undefine an inactive network
 net-update update parts of an existing network's
 configuration
 net-uuid convert a network name to network UUID

To view brief help information for a specific virsh command, run virsh help VIRSH_COM-
MAND :

tux > sudo virsh help net-create
 NAME

101 Managing Virtual Networks with virsh openSUSE Leap 15.0

http://wiki.libvirt.org/page/NSS_module

 net-create - create a network from an XML file

 SYNOPSIS
 net-create <file>

 DESCRIPTION
 Create a network.

 OPTIONS
 [--file] <string> file containing an XML network description

12.1.2.1 Creating a Network

To create a new running virtual network, run

tux > sudo virsh net-create VNET_DEFINITION.xml

The VNET_DEFINITION.xml XML le includes the definition of the virtual network that lib-
virt accepts.

To define a new virtual network without activating it, run

tux > sudo virsh net-define VNET_DEFINITION.xml

The following examples illustrate definitions of different types of virtual networks.

EXAMPLE 12.1: NAT BASED NETWORK

The following configuration allows VM Guests outgoing connectivity if it is available on
VM Host Server. In the absence of VM Host Server networking, it allows guests to talk
directly to each other.

<network>
<name>vnet_nated</name> 1

<bridge name="virbr1" /> 2

 <forward mode="nat"/> 3

 <ip address="192.168.122.1" netmask="255.255.255.0"> 4

 <dhcp>
 <range start="192.168.122.2" end="192.168.122.254" /> 5

 <host mac="52:54:00:c7:92:da" name="host1.testing.com" \
 ip="192.168.1.23.101" /> 6

 <host mac="52:54:00:c7:92:db" name="host2.testing.com" \
 ip="192.168.1.23.102" />
 <host mac="52:54:00:c7:92:dc" name="host3.testing.com" \
 ip="192.168.1.23.103" />

102 Managing Virtual Networks with virsh openSUSE Leap 15.0

 </dhcp>
 </ip>
</network>

1 The name of the new virtual network.

2 The name of the bridge device used to construct the virtual network. When defining
a new network with a <forward> mode of "nat" or "route" (or an isolated network
with no <forward> element), libvirt will automatically generate a unique name
for the bridge device if none is given.

3 Inclusion of the <forward> element indicates that the virtual network will be con-
nected to the physical LAN. The mode attribute specifies the forwarding method. The
most common modes are "nat" (default, network address translation), "route" (direct
forwarding to the physical network, no address translation), and "bridge" (network
bridge configured outside of libvirt). If the <forward> element is not specified,
the virtual network will be isolated from other networks. For a complete list of for-
warding modes, see http://libvirt.org/formatnetwork.html#elementsConnect .

4 The IP address and netmask for the network bridge.

5 Enable DHCP server for the virtual network, offering IP addresses ranging from the
specified start and end attribute.

6 The optional <host> elements specify hosts that will be given names and predefined
IP addresses by the built-in DHCP server. Any IPv4 host element must specify the
following: the MAC address of the host to be assigned a given name, the IP to be
assigned to that host, and the name to be given to that host by the DHCP server. An
IPv6 host element differs slightly from that for IPv4: there is no mac attribute since
a MAC address has no defined meaning in IPv6. Instead, the name attribute is used
to identify the host to be assigned the IPv6 address. For DHCPv6, the name is the
plain name of the client host sent by the client to the server. Note that this method of
assigning a specific IP address can also be used instead of the mac attribute for IPv4.

EXAMPLE 12.2: ROUTED NETWORK

The following configuration routes traffic from the virtual network to the LAN without
applying any NAT. The IP address range must be preconfigured in the routing tables of
the router on the VM Host Server network.

<network>
 <name>vnet_routed</name>
 <bridge name="virbr1" />
 <forward mode="route" dev="eth1"/> 1

103 Managing Virtual Networks with virsh openSUSE Leap 15.0

http://libvirt.org/formatnetwork.html#elementsConnect

 <ip address="192.168.122.1" netmask="255.255.255.0">
 <dhcp>
 <range start="192.168.122.2" end="192.168.122.254" />
 </dhcp>
 </ip>
</network>

1 The guest traffic may only go out via the eth1 network device on the VM Host Server.

EXAMPLE 12.3: ISOLATED NETWORK

This configuration provides a completely isolated private network. The guests can talk to
each other, and to VM Host Server, but cannot reach any other machines on the LAN, as
the <forward> element is missing in the XML description.

<network>
 <name>vnet_isolated</name>
 <bridge name="virbr3" />
 <ip address="192.168.152.1" netmask="255.255.255.0">
 <dhcp>
 <range start="192.168.152.2" end="192.168.152.254" />
 </dhcp>
 </ip>
 </network>

EXAMPLE 12.4: USING AN EXISTING BRIDGE ON VM HOST SERVER

This configuration shows how to use an existing VM Host Server's network bridge br0 .
VM Guests are directly connected to the physical network. Their IP addresses will all be
on the subnet of the physical network, and there will be no restrictions on incoming or
outgoing connections.

<network>
 <name>host-bridge</name>
 <forward mode="bridge"/>
 <bridge name="br0"/>
</network>

12.1.2.2 Listing Networks

To list all virtual networks available to libvirt , run:

tux > sudo virsh net-list --all

104 Managing Virtual Networks with virsh openSUSE Leap 15.0

 Name State Autostart Persistent
--
 crowbar active yes yes
 vnet_nated active yes yes
 vnet_routed active yes yes
 vnet_isolated inactive yes yes

To list available domains, run:

tux > sudo virsh list
 Id Name State
--
 1 nated_sles12sp3 running
 ...

To get a list of interfaces of a running domain, run domifaddr DOMAIN , or optionally specify
the interface to limit the output to this interface. By default, it additionally outputs their IP and
MAC addresses:

tux > sudo virsh domifaddr nated_sles12sp3 --interface vnet0 --source lease
 Name MAC address Protocol Address

 vnet0 52:54:00:9e:0d:2b ipv6 fd00:dead:beef:55::140/64
 - - ipv4 192.168.100.168/24

To print brief information of all virtual interfaces associated with the specified domain, run:

tux > sudo virsh domiflist nated_sles12sp3
Interface Type Source Model MAC

vnet0 network vnet_nated virtio 52:54:00:9e:0d:2b

12.1.2.3 Getting Details about a Network

To get detailed information about a network, run:

tux > sudo virsh net-info vnet_routed
Name: vnet_routed
UUID: 756b48ff-d0c6-4c0a-804c-86c4c832a498
Active: yes
Persistent: yes
Autostart: yes
Bridge: virbr5

105 Managing Virtual Networks with virsh openSUSE Leap 15.0

12.1.2.4 Starting a Network

To start an inactive network that was already defined, nd its name (or unique identifier, UUID)
with:

tux > sudo virsh net-list --inactive
 Name State Autostart Persistent
--
 vnet_isolated inactive yes yes

Then run:

tux > sudo virsh net-start vnet_isolated
Network vnet_isolated started

12.1.2.5 Stopping a Network

To stop an active network, nd its name (or unique identifier, UUID) with:

tux > sudo virsh net-list --inactive
 Name State Autostart Persistent
--
 vnet_isolated active yes yes

Then run:

tux > sudo virsh net-destroy vnet_isolated
Network vnet_isolated destroyed

12.1.2.6 Removing a Network

To remove the definition of an inactive network from VM Host Server permanently, run:

tux > sudo virsh net-undefine vnet_isolated
Network vnet_isolated has been undefined

12.2 Bridged Networking
A network bridge is used to connect two or more network segments. It behaves like a virtual
network switch, and guest machines treat it transparently as a physical network interface. Any
physical or virtual device can be connected to the bridge.

106 Bridged Networking openSUSE Leap 15.0

If there is a network bridge present on VM Host Server, you can connect a VM Guest to it directly.
This provides the VM Guest with full incoming and outgoing network access.

12.2.1 Managing Network Bridges with YaST

This section includes procedures to add or remove network bridges with YaST.

12.2.1.1 Adding a Network Bridge

To add a network bridge on VM Host Server, follow these steps:

1. Start YaST System Network Settings.

2. Activate the Overview tab and click Add.

3. Select Bridge from the Device Type list and enter the bridge device interface name in the
Configuration Name entry. Proceed with Next.

4. In the Address tab, specify networking details such as DHCP/static IP address, subnet mask
or host name.
Using Dynamic Address is only useful when also assigning a device to a bridge that is
connected to some DHCP server.
If you intend to create a virtual bridge that has no connection to a real Ethernet device,
use Statically assigned IP Address. In this case, it is a good idea to use addresses from the
private IP address ranges, for example, 192.168.x.x or 10.x.x.x .
To create a bridge that should only serve as a connection between the different guests
without connection to the host system, set the IP address to 0.0.0.0 and the subnet
mask to 255.255.255.255 . The network scripts handle this special address as an unset
IP address.

5. Activate the Bridged Devices tab and activate the network devices you want to include in
the network bridge.

6. Click Next to return to the Overview tab and confirm with OK. The new network bridge
should be active on VM Host Server now.

107 Managing Network Bridges with YaST openSUSE Leap 15.0

12.2.1.2 Deleting a Network Bridge

To delete an existing network bridge, follow these steps:

1. Start YaST System Network Settings.

2. Select the bridge device you want to delete from the list in the Overview tab.

3. Delete the bridge with Delete and confirm with OK.

12.2.2 Managing Network Bridges from the Command Line

This section includes procedures to add or remove network bridges using the command line.

12.2.2.1 Adding a Network Bridge

To add a new network bridge device on VM Host Server, follow these steps:

1. Log in as root on the VM Host Server where you want to create a new network bridge.

2. Choose a name for the new bridge— virbr_test in our example—and run

root # ip link add name VIRBR_TEST type bridge

3. Check if the bridge was created on VM Host Server:

root # bridge vlan
[...]
virbr_test 1 PVID Egress Untagged

virbr_test is present, but is not associated with any physical network interface.

4. Bring the network bridge up and add a network interface to the bridge:

root # ip link set virbr_test up
root # ip link set eth1 master virbr_test

Important: Network Interface Must Be Unused
You can only enslave a network interface that is not yet used by other network
bridge.

108 Managing Network Bridges from the Command Line openSUSE Leap 15.0

5. Optionally, enable STP (see Spanning Tree Protocol (https://en.wikipedia.org/wiki/Span-

ning_Tree_Protocol)):

root # bridge link set dev virbr_test cost 4

12.2.2.2 Deleting a Network Bridge

To delete an existing network bridge device on VM Host Server from the command line, follow
these steps:

1. Log in as root on the VM Host Server where you want to delete an existing network
bridge.

2. List existing network bridges to identify the name of the bridge to remove:

root # bridge vlan
[...]
virbr_test 1 PVID Egress Untagged

3. Delete the bridge:

root # ip link delete dev virbr_test

12.2.3 Using VLAN Interfaces

Sometimes, it is necessary to create a private connection either between two VM Host Servers
or between VM Guest systems. For example, to migrate VM Guest to hosts in a different network
segment, or to create a private bridge that only VM Guest systems may connect to (even when
running on different VM Host Server systems). An easy way to build such connections is to set
up VLAN networks.

VLAN interfaces are commonly set up on the VM Host Server. They either interconnect the
different VM Host Server systems, or they may be set up as a physical interface to an otherwise
virtual-only bridge. It is even possible to create a bridge with a VLAN as a physical interface
that has no IP address in the VM Host Server. That way, the guest systems have no possibility
to access the host over this network.

109 Using VLAN Interfaces openSUSE Leap 15.0

https://en.wikipedia.org/wiki/Spanning_Tree_Protocol
https://en.wikipedia.org/wiki/Spanning_Tree_Protocol

Run the YaST module System Network Settings. Follow this procedure to set up the VLAN device:

PROCEDURE 12.1: SETTING UP VLAN INTERFACES WITH YAST

1. Click Add to create a new network interface.

2. In the Hardware Dialog, select Device Type VLAN.

3. Change the value of Configuration Name to the ID of your VLAN. Note that VLAN ID 1 is
commonly used for management purposes.

4. Click Next.

5. Select the interface that the VLAN device should connect to below Real Interface for VLAN.
If the desired interface does not appear in the list, rst set up this interface without an
IP Address.

6. Select the desired method for assigning an IP address to the VLAN device.

7. Click Next to finish the configuration.

It is also possible to use the VLAN interface as a physical interface of a bridge. This makes it
possible to connect several VM Host Server-only networks and allows to live-migrate VM Guest
systems that are connected to such a network.

YaST does not always allow to set no IP address. However, this may be a desired feature es-
pecially if VM Host Server-only networks should be connected. In this case, use the special ad-
dress 0.0.0.0 with netmask 255.255.255.255 . The system scripts handle this address as no
IP address set.

110 Using VLAN Interfaces openSUSE Leap 15.0

13 Configuring Virtual Machines

Virtual Machine Manager's Details view offers in-depth information about the VM
Guest's complete configuration and hardware equipment. Using this view, you can
also change the guest configuration or add and modify virtual hardware. To access
this view, open the guest's console in Virtual Machine Manager and either choose
View Details from the menu, or click Show virtual hardware details in the toolbar.

FIGURE 13.1: DETAILS VIEW OF A VM GUEST

The left panel of the window lists VM Guest overview and already installed hardware. After
clicking an item in the list, you can access its detailed settings in the details view. You can change
the hardware parameters to match your needs, then click Apply to confirm them. Some changes
take effect immediately, while others need a reboot of the machine—and virt-manager warns
you about that fact.

To remove installed hardware from a VM Guest, select the appropriate list entry in the left panel
and then click Remove in the bottom right of the window.

To add new hardware, click Add Hardware below the left panel, then select the type of the
hardware you want to add in the Add New Virtual Hardware window. Modify its parameters and
confirm with Finish.

111 openSUSE Leap 15.0

The following sections describe configuration options for the specific hardware type being added.
They do not focus on modifying an existing piece of hardware as the options are identical.

13.1 Machine Setup

This section describes the setup of the virtualized processor and memory hardware. These com-
ponents are vital to a VM Guest, therefore you cannot remove them. It also shows how to view
the overview and performance information, and how to change boot parameters.

13.1.1 Overview

Overview shows basic details about VM Guest and the hypervisor.

FIGURE 13.2: OVERVIEW DETAILS

Name, Title, and Description are editable and help you identify VM Guest in the Virtual Machine
Manager list of machines.

112 Machine Setup openSUSE Leap 15.0

FIGURE 13.3: VM GUEST TITLE AND DESCRIPTION

UUID shows the universally unique identifier of the virtual machine, while Status shows its
current status—Running, Paused, or Shutoff.

The Hypervisor Details section shows the hypervisor type, CPU architecture, used emulator, and
chipset type. None of the hypervisor parameters can be changed.

13.1.2 Performance

Performance shows regularly updated charts of CPU and memory usage, and disk and network
I/O.

FIGURE 13.4: PERFORMANCE

Tip: Enabling Disabled Charts
Not all the charts in the Graph view are enabled by default. To enable these charts, go to
File View Manager, then select Edit Preferences Polling, and check the charts that you
want to see regularly updated.

113 Performance openSUSE Leap 15.0

FIGURE 13.5: STATISTICS CHARTS

13.1.3 Processor

Processor includes detailed information about VM Guest processor configuration.

FIGURE 13.6: PROCESSOR VIEW

In the CPUs section, you can configure several parameters related to the number of allocated
CPUs.

114 Processor openSUSE Leap 15.0

Logical host CPUs

The real number of CPUs installed on VM Host Server.

Current allocation

The number of currently allocated CPUs. You can hotplug more CPUs by increasing this
value up to the Maximum allocation value.

Maximum allocation

Maximum number of allocatable CPUs for the current session. Any change to this value
will take effect after the next VM Guest reboot.

The Configuration section lets you configure the CPU model and topology.

When activated, the Copy host CPU configuration option uses the host CPU model for VM Guest.
Otherwise you need to specify the CPU model from the drop-down box.

After you activate Manually set CPU topology, you can specify a custom number of sockets, cores
and threads for the CPU.

13.1.4 Memory

Memory contains information about the memory that is available to VM Guest.

FIGURE 13.7: MEMORY VIEW

Total host memory

Total amount of memory installed on VM Host Server.

115 Memory openSUSE Leap 15.0

Current allocation

The amount of memory currently available to VM Guest. You can hotplug more memory
by increasing this value up to the value of Maximum allocation.

Maximum allocation

The maximum value to which you can hotplug the currently available memory. Any change
to this value will take effect after the next VM Guest reboot.

13.1.5 Boot Options

Boot Options introduces options affecting the VM Guest boot process.

FIGURE 13.8: BOOT OPTIONS

In the Autostart section, you can specify whether the virtual machine should automatically start
during the VM Host Server boot phase.

In the Boot device order, activate the devices that will be used for booting VM Guest. You can
change their order with the up and down arrow buttons on the right side of the list. To choose
from a list of bootable devices on VM Guest start, activate Enable boot menu.

116 Boot Options openSUSE Leap 15.0

To boot a different kernel than the one on the boot device, activate Enable direct kernel boot and
specify the paths to the alternative kernel and initrd placed on the VM Host Server le system.
You can also specify kernel arguments that will be passed to the loaded kernel.

13.2 Storage
This section gives you a detailed description of configuration options for storage devices. It
includes both hard disks and removable media, such as USB or CD-ROM drives.

PROCEDURE 13.1: ADDING A NEW STORAGE DEVICE

1. Click Add Hardware below the left panel, then select Storage from the Add New Virtual
Hardware window.

FIGURE 13.9: ADD A NEW STORAGE

2. To create a qcow2 disk image in the default location, activate Create a disk image for the
virtual machine and specify its size in gigabytes.

117 Storage openSUSE Leap 15.0

To gain more control over the disk image creation, activate Select or create custom storage
and click Manage to manage storage pools and images. The window Choose Storage Volume
opens which has almost identical functionality as the Storage tab described in Section 11.1,

“Managing Storage with Virtual Machine Manager”.

Tip: Supported Storage Formats
SUSE only supports the following storage formats: raw , and qcow2 .

3. After you manage to create and specify the disk image le, specify the Device type. It can
be one of the following options:

Disk device

CDROM device: Does not allow using Create a disk image for the virtual machine.

Floppy device: Does not allow using Create a disk image for the virtual machine.

LUN Passthrough: Required to use an existing SCSI storage directly without adding
it into a storage pool.

4. Select the Bus type for your device. The list of available options depends on the device type
you selected in the previous step. The types based on VirtIO use paravirtualized drivers.

5. In the Advanced options section, select the preferred Cache mode. For more information on
cache modes, see Chapter 14, Disk Cache Modes.

6. Confirm your settings with Finish. A new storage device appears in the left panel.

13.3 Controllers

This section focuses on adding and configuring new controllers.

PROCEDURE 13.2: ADDING A NEW CONTROLLER

1. Click Add Hardware below the left panel, then select Controller from the Add New Virtual
Hardware window.

118 Controllers openSUSE Leap 15.0

FIGURE 13.10: ADD A NEW CONTROLLER

2. Select the type of the controller. You can choose from IDE, Floppy, SCSI, SATA, VirtIO Serial
(paravirtualized), USB, or CCID (smart card devices).

3. Optionally, in the case of a USB or SCSI controller, select a controller model.

4. Confirm your settings with Finish. A new controller appears in the left panel.

13.4 Networking

This section describes how to add and configure new network devices.

PROCEDURE 13.3: ADDING A NEW NETWORK DEVICE

1. Click Add Hardware below the left panel, then select Network from the Add New Virtual
Hardware window.

119 Networking openSUSE Leap 15.0

FIGURE 13.11: ADD A NEW CONTROLLER

2. From the Network source list, select the source for the network connection. The list in-
cludes VM Host Server's available physical network interfaces, network bridges, or net-
work bonds. You can also assign the VM Guest to an already defined virtual network. See
Chapter 12, Managing Networks for more information on setting up virtual networks with
Virtual Machine Manager.

3. Specify a MAC address for the network device. While Virtual Machine Manager pre-lls a
random value for your convenience, it is recommended to supply a MAC address appro-
priate for your network environment to avoid network conflicts.

4. Select a device model from the list. You can either leave the Hypervisor default, or specify
one of e1000, rtl8139, or virtio models. Note that virtio uses paravirtualized drivers.

5. Confirm your settings with Finish. A new network device appears in the left panel.

120 Networking openSUSE Leap 15.0

13.5 Enabling Seamless and Synchronized Mouse
Pointer Movement
When you click within a VM Guest's console with the mouse, the pointer is captured by the
console window and cannot be used outside the console unless it is explicitly released (by press-
ing Alt – Ctrl). To prevent the console from grabbing the key and to enable seamless pointer
movement between host and guest instead, add a tablet to the VM Guest.

Adding a tablet has the additional advantage of synchronizing the mouse pointer movement
between VM Host Server and VM Guest when using a graphical environment on the guest. With
no tablet configured on the guest, you will often see two pointers with one dragging behind
the other.

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View Details.

2. Click Add Hardware and choose Input and then EvTouch USB Graphics Tablet in the pop-
up window. Proceed with Finish.

3. If the guest is running, you will be asked whether to enable the tablet after the next reboot.
Confirm with Yes.

4. When you start or restart the VM Guest, the tablet becomes available in the VM Guest.

13.6 Adding a CD/DVD-ROM Device with Virtual
Machine Manager
KVM supports CD or DVD-ROMs in VM Guest either by directly accessing a physical drive on
the VM Host Server or by accessing ISO images. To create an ISO image from an existing CD
or DVD, use dd :

tux > sudo dd if=/dev/CD_DVD_DEVICE of=my_distro.iso bs=2048

To add a CD/DVD-ROM device to your VM Guest, proceed as follows:

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View Details.

121 Enabling Seamless and Synchronized Mouse Pointer Movement openSUSE Leap 15.0

2. Click Add Hardware and choose Storage in the pop-up window.

3. Change the Device Type to IDE CDROM.

4. Select Select or create custom storage.

a. To assign the device to a physical medium, enter the path to the VM Host Server's
CD/DVD-ROM device (for example, /dev/cdrom) next to Manage. Alternatively, use
Manage to open a le browser and then click Browse Local to select the device. As-
signing the device to a physical medium is only possible when the Virtual Machine
Manager was started on the VM Host Server.

b. To assign the device to an existing image, click Manage to choose an image from a
storage pool. If the Virtual Machine Manager was started on the VM Host Server,
alternatively choose an image from another location on the le system by clicking
Browse Local. Select an image and close the le browser with Choose Volume.

5. Save the new virtualized device with Finish.

6. Reboot the VM Guest to make the new device available. For more information, see Sec-

tion 13.8, “Ejecting and Changing Floppy or CD/DVD-ROM Media with Virtual Machine Manager”.

13.7 Adding a Floppy Device with Virtual Machine
Manager
Currently KVM only supports the use of floppy disk images—using a physical floppy drive is not
supported. Create a floppy disk image from an existing floppy using dd :

tux > sudo dd if=/dev/fd0 of=/var/lib/libvirt/images/floppy.img

To create an empty floppy disk image use one of the following commands:

Raw Image

tux > sudo dd if=/dev/zero of=/var/lib/libvirt/images/floppy.img bs=512 count=2880

FAT Formatted Image

tux > sudo mkfs.msdos -C /var/lib/libvirt/images/floppy.img 1440

122 Adding a Floppy Device with Virtual Machine Manager openSUSE Leap 15.0

To add a floppy device to your VM Guest, proceed as follows:

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View Details.

2. Click Add Hardware and choose Storage in the pop-up window.

3. Change the Device Type to Floppy Disk.

4. Choose Select or create custom storage and click Manage to choose an existing image from a
storage pool. If Virtual Machine Manager was started on the VM Host Server, alternatively
choose an image from another location on the le system by clicking Browse Local. Select
an image and close the le browser with Choose Volume.

5. Save the new virtualized device with Finish.

6. Reboot the VM Guest to make the new device available. For more information, see Sec-

tion 13.8, “Ejecting and Changing Floppy or CD/DVD-ROM Media with Virtual Machine Manager”.

13.8 Ejecting and Changing Floppy or CD/DVD-ROM
Media with Virtual Machine Manager
Whether you are using the VM Host Server's physical CD/DVD-ROM device or an ISO/floppy
image: Before you can change the media or image of an existing device in the VM Guest, you
rst need to disconnect the media from the guest.

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View Details.

2. Choose the Floppy or CD/DVD-ROM device and “eject” the medium by clicking Disconnect.

3. To “insert” a new medium, click Connect.

a. If using the VM Host Server's physical CD/DVD-ROM device, rst change the media
in the device (this may require unmounting it on the VM Host Server before it can be
ejected). Then choose CD-ROM or DVD and select the device from the drop-down box.

b. If you are using an ISO image, choose ISO image Location and select an image by
clicking Manage. When connecting from a remote host, you may only choose images
from existing storage pools.

123

Ejecting and Changing Floppy or CD/DVD-ROM Media with Virtual Machine Manag-

er openSUSE Leap 15.0

4. Click OK to finish. The new media can now be accessed in the VM Guest.

13.9 Changing the Machine Type with virsh
By default, when installing with the virt-install tool, the machine type for VM Guest is
pc-i440fx. The machine type is stored in the VM Guest's XML configuration le in /etc/lib-
virt/qemu/ in the tag type :

<type arch='x86_64' machine='pc-i440fx-2.3'>hvm</type>

As an example, the following procedure shows how to change this value to the machine type
q35 . q35 is an Intel* chipset. It includes PCIe, supports up to 12 USB ports, and has support for
SATA and IOMMU. IRQ routing has also been improved.

1. Check whether your VM Guest is inactive:

tux > sudo virsh list --inactive
Id Name State
--
- sles11 shut off

2. Edit the configuration for this VM Guest:

tux > sudo virsh edit sles11

3. Change the value of the machine attribute:

<type arch='x86_64' machine='pc-q35-2.0'>hvm</type>

4. Restart the VM Guest.

tux > sudo virsh start sles11

5. Check that the machine type has changed. Log in to the VM Guest as root and run the
following command:

tux > sudo dmidecode | grep Product
Product Name: Standard PC (Q35 + ICH9, 2009)

124 Changing the Machine Type with virsh openSUSE Leap 15.0

Tip: Machine Type Update Recommendations
Whenever the QEMU version on the host system is upgraded (for example, when upgrad-
ing the VM Host Server to a new service pack), upgrade the machine type of the VM
Guests to the latest available version. To check, use the command qemu-system-x86_64
-M help on the VM Host Server.

The default machine type pc-i440fx , for example, is regularly updated. If your VM
Guest still runs with a machine type of pc-i440fx-1.X , an update to pc-i440fx-2.X
is strongly recommended. This allows taking advantage of the most recent updates and
corrections in machine definitions, and ensures better future compatibility.

13.10 Assigning a Host PCI Device to a VM Guest

You can directly assign host-PCI devices to guests (PCI pass-through). When the PCI device is
assigned to one VM Guest, it cannot be used on the host or by another VM Guest unless it is
re-assigned. A prerequisite for this feature is a VM Host Server configuration as described in
Important: Requirements for VFIO and SR-IOV.

13.10.1 Adding a PCI Device with Virtual Machine Manager

The following procedure describes how to add a PCI device to a VM Guest using Virtual Machine
Manager:

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View Details.

2. Click Add Hardware and choose the PCI Host Device category in the left panel. A list of
available PCI devices appears in the right part of the window.

125 Assigning a Host PCI Device to a VM Guest openSUSE Leap 15.0

FIGURE 13.12: ADDING A PCI DEVICE

3. From the list of available PCI devices, choose the one you want to pass to the guest.
Confirm with Finish.

Tip: Assigning a PCI Device Requires a VM Guest
Shutdown
Although it is possible to assign a PCI device to a running VM Guest as described above,
the device will not become available until you shut down the VM Guest and reboot it
afterward.

13.10.2 Adding a PCI Device with virsh
To assign a PCI device to VM Guest with virsh , follow these steps:

1. Identify the host PCI device to assign to the guest. In the following example, we are as-
signing a DEC network card to the guest:

tux > sudo lspci -nn
[...]

126 Adding a PCI Device with virsh openSUSE Leap 15.0

03:07.0 Ethernet controller [0200]: Digital Equipment Corporation DECchip \
21140 [FasterNet] [1011:0009] (rev 22)
[...]

Note down the device ID (03:07.0 in this case).

2. Gather detailed information about the device using virsh nodedev-dumpxml ID . To get
the ID , you need to replace colon and period in the device ID (03:07.0) with underscore
and prefix the result with “pci_0000_” (pci_0000_03_07_0).

tux > virsh nodedev-dumpxml pci_0000_03_07_0
<device>
 <name>pci_0000_03_07_0</name>
 <path>/sys/devices/pci0000:00/0000:00:14.4/0000:03:07.0</path>
 <parent>pci_0000_00_14_4</parent>
 <driver>
 <name>tulip</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>3</bus>
 <slot>7</slot>
 <function>0</function>
 <product id='0x0009'>DECchip 21140 [FasterNet]</product>
 <vendor id='0x1011'>Digital Equipment Corporation</vendor>
 <numa node='0'/>
 </capability>
</device>

Note down the values for domain, bus, and function.

3. Detach the device from the host system prior to attaching it to VM Guest.

tux > virsh nodedev-detach pci_0000_03_07_0
 Device pci_0000_03_07_0 detached

Tip: Multi-Function PCI Devices
When using a multi-function PCI device that does not support FLR (function level
reset) or PM (power management) reset, you need to detach all its functions from
the VM Host Server. The whole device must be reset for security reasons. libvirt
will refuse to assign the device if one of its functions is still in use by the VM Host
Server or another VM Guest.

127 Adding a PCI Device with virsh openSUSE Leap 15.0

4. Convert the domain, bus, slot, and function value from decimal to hexadecimal, and prefix
with 0x to tell the system that the value is hexadecimal. In our example, domain = 0,
bus = 3, slot = 7, and function = 0. Their hexadecimal values are:

tux > printf %x 0
0
tux > printf %x 3
3
tux > printf %x 7
7

This results in domain = 0x0000, bus = 0x03, slot = 0x07 and function = 0x00.

5. Run virsh edit on your domain, and add the following device entry in the <devices>
section using the values from the previous step:

<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0x0000' bus='0x03' slot='0x07' function='0x0'/>
 </source>
</hostdev>

Tip: managed Compared to unmanaged
libvirt recognizes two modes for handling PCI devices: they can be either man-
aged or unmanaged . In the managed case, libvirt will handle all details of un-
binding the device from the existing driver if needed, resetting the device, binding
it to vfio-pci before starting the domain, etc. When the domain is terminated
or the device is removed from the domain, libvirt will unbind from vfio-pci
and rebind to the original driver in the case of a managed device. If the device is
unmanaged, the user must ensure all of these management aspects of the device
are done before assigning it to a domain, and after the device is no longer used
by the domain.

In the example above, the managed='yes' option means that the device is man-
aged. To switch the device mode to unmanaged, set managed='no' in the listing
above. If you do so, you need to take care of the related driver with the virsh nod-
edev-detach and virsh nodedev-reattach commands. That means you need to
run virsh nodedev-detach pci_0000_03_07_0 prior to starting the VM Guest

128 Adding a PCI Device with virsh openSUSE Leap 15.0

to detach the device from the host. In case the VM Guest is not running, you
can make the device available for the host by running virsh nodedev-reattach
pci_0000_03_07_0 .

6. Shut down the VM Guest and restart it to make the assigned PCI device available.

Tip: SELinux
If you are running SELinux on your VM Host Server, you need to disable it prior
to starting the VM Guest with

setsebool -P virt_use_sysfs 1

13.11 Assigning a Host USB Device to a VM Guest

Analogous to assigning host PCI devices (see Section 13.10, “Assigning a Host PCI Device to a VM

Guest”), you can directly assign host USB devices to guests. When the USB device is assigned to
one VM Guest, it cannot be used on the host or by another VM Guest unless it is re-assigned.

13.11.1 Adding a USB Device with Virtual Machine Manager

To assign a host USB device to VM Guest using Virtual Machine Manager, follow these steps:

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View Details.

2. Click Add Hardware and choose the USB Host Device category in the left panel. A list of
available USB devices appears in the right part of the window.

129 Assigning a Host USB Device to a VM Guest openSUSE Leap 15.0

FIGURE 13.13: ADDING A USB DEVICE

3. From the list of available USB devices, choose the one you want to pass to the guest.
Confirm with Finish. The new USB device appears in the left pane of the Details view.

Tip: USB Device Removal
To remove the host USB device assignment, click it in the left pane of the Details
view and confirm with Remove.

13.11.2 Adding a USB Device with virsh

To assign a USB device to VM Guest using virsh , follow these steps:

1. Identify the host USB device to assign to the guest:

tux > sudo lsusb
[...]
Bus 001 Device 003: ID 0557:2221 ATEN International Co., Ltd Winbond Hermon
[...]

130 Adding a USB Device with virsh openSUSE Leap 15.0

Note down the vendor and product IDs. In our example, the vendor ID is 0557 and the
product ID is 2221 .

2. Run virsh edit on your domain, and add the following device entry in the <devices>
section using the values from the previous step:

<hostdev mode='subsystem' type='usb'>
 <source startupPolicy='optional'>
 <vendor id='0557'/>
 <product id='2221'/>
 </source>
</hostdev>

Tip: Vendor/Product or Device's Address
Instead of defining the host device with <vendor/> and <product/> IDs, you can
use the <address/> element as described for host PCI devices in Section 13.10.2,

“Adding a PCI Device with virsh”.

3. Shut down the VM Guest and restart it to make the assigned USB device available.

Tip: SELinux
If you are running SELinux on your VM Host Server, you need to disable it prior
to starting the VM Guest with

tux > setsebool -P virt_use_sysfs 1

13.12 Adding SR-IOV Devices
Single Root I/O Virtualization (SR-IOV) capable PCIe devices can replicate their resources, so they
appear to be multiple devices. Each of these "pseudo-devices" can be assigned to a VM Guest.

SR-IOV is an industry specification that was created by the Peripheral Component Interconnect
Special Interest Group (PCI-SIG) consortium. It introduces physical functions (PF) and virtual
functions (VF). PFs are full PCIe functions used to manage and configure the device. PFs also
can move data. VFs lack the configuration and management part—they only can move data
and a reduced set of configuration functions. Since VFs do not have all PCIe functions, the host

131 Adding SR-IOV Devices openSUSE Leap 15.0

operating system or the Hypervisor must support SR-IOV to be able to access and initialize VFs.
The theoretical maximum for VFs is 256 per device (consequently the maximum for a dual-port
Ethernet card would be 512). In practice this maximum is much lower, since each VF consumes
resources.

13.12.1 Requirements

The following requirements must be met to be able to use SR-IOV:

An SR-IOV-capable network card (as of openSUSE Leap 15.0, only network cards support
SR-IOV)

An AMD64/Intel 64 host supporting hardware virtualization (AMD-V or Intel VT-x)

A chipset that supports device assignment (AMD-Vi or Intel VT-d)

libvirt-0.9.10 or better

SR-IOV drivers must be loaded and configured on the host system

A host configuration that meets the requirements listed at Important: Requirements for VFIO

and SR-IOV

A list of the PCI addresses of the VF(s) that will be assigned to VM Guests

Tip: Checking if a Device is SR-IOV-Capable
The information whether a device is SR-IOV-capable can be obtained from its PCI de-
scriptor by running lspci . A device that supports SR-IOV reports a capability similar to
the following:

Capabilities: [160 v1] Single Root I/O Virtualization (SR-IOV)

Note: Adding an SR-IOV Device at VM Guest
Creation
Before adding an SR-IOV device to a VM Guest when initially setting it up, the VM Host
Server already needs to be configured as described in Section 13.12.2, “Loading and Config-

uring the SR-IOV Host Drivers”.

132 Requirements openSUSE Leap 15.0

13.12.2 Loading and Configuring the SR-IOV Host Drivers

To be able to access and initialize VFs, an SR-IOV-capable driver needs to be loaded on the
host system.

1. Before loading the driver, make sure the card is properly detected by running lspci . The
following example shows the lspci output for the dual-port Intel 82576NS network card:

tux > sudo /sbin/lspci | grep 82576
01:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection
 (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection
 (rev 01)
04:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection
 (rev 01)
04:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection
 (rev 01)

In case the card is not detected, it is likely that the hardware virtualization support in the
BIOS/EFI has not been enabled.

2. Check whether the SR-IOV driver is already loaded by running lsmod . In the following
example a check for the igb driver (for the Intel 82576NS network card) returns a result.
That means the driver is already loaded. If the command returns nothing, the driver is
not loaded.

tux > sudo /sbin/lsmod | egrep "^igb "
igb 185649 0

3. Skip this step if the driver is already loaded.
If the SR-IOV driver is not yet loaded, the non-SR-IOV driver needs to be removed rst, before
loading the new driver. Use rmmod to unload a driver. The following example unloads the
non-SR-IOV driver for the Intel 82576NS network card:

tux > sudo /sbin/rmmod igbvf

Load the SR-IOV driver subsequently using the modprobe command—the VF parameter
(max_vfs) is mandatory:

tux > sudo /sbin/modprobe igb max_vfs=8

133 Loading and Configuring the SR-IOV Host Drivers openSUSE Leap 15.0

Or load the driver via SYSFS:
Find the PCI ID of the physical NIC by listing Ethernet devices:

tux > sudo lspci | grep Eth
06:00.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)
06:00.1 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)

To enable VFs, echo the number of desired VFs to load to the sriov_numvfs parameter:

tux > sudo echo 1 > /sys/bus/pci/devices/0000:06:00.1/sriov_numvfs

Verify that the VF NIC was loaded:

tux > sudo lspci | grep Eth
06:00.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)
06:00.1 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)
06:08.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)

Obtain the maximum number of VFs available:

tux > sudo lspci -vvv -s 06:00.1 | grep 'Initial VFs'
 Initial VFs: 32, Total VFs: 32, Number of VFs: 0,
Function Dependency Link: 01

4. Create a before.service le which loads VF via SYSFS on boot:

[Unit]
Before=
After=network-online.target
[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=/bin/bash -c "echo 1 > /sys/bus/pci/devices/0000:06:00.1/sriov_numvfs"
beware, executable is run directly, not through a shell, check the man pages
systemd.service and systemd.unit for full syntax
[Install]
target in which to start the service
WantedBy=multi-user.target
#WantedBy=graphical.target

And copy it to /etc/systemd/system .

134 Loading and Configuring the SR-IOV Host Drivers openSUSE Leap 15.0

Additionally, it is required to create another service le (after-local.service) point-
ing to /etc/init.d/after.local script that detaches the NIC prior to starting the VM,
otherwise the VM would fail to start:

[Unit]
Description=/etc/init.d/after.local Compatibility
After=libvirtd.service
Requires=libvirtd.service
[Service]
Type=oneshot
ExecStart=/etc/init.d/after.local
RemainAfterExit=true

[Install]
WantedBy=multi-user.target

And copy it to /etc/systemd/system .

#! /bin/sh
#
Copyright (c) 2010 SuSE LINUX Products GmbH, Germany. All rights reserved.
...
virsh nodedev-detach pci_0000_06_08_0

Then save it as /etc/init.d/after.local .

5. Reboot the machine and check if the SR-IOV driver is loaded by re-running the lspci
command from the rst step of this procedure. If the SR-IOV driver was loaded successfully
you should see additional lines for the VFs:

01:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection
 (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection
 (rev 01)
01:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
01:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
01:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
[...]
04:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection
 (rev 01)
04:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection
 (rev 01)
04:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
04:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
04:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)

135 Loading and Configuring the SR-IOV Host Drivers openSUSE Leap 15.0

[...]

13.12.3 Adding a VF Network Device to an Existing VM Guest

When the SR-IOV hardware is properly set up on the VM Host Server, you can add VFs to VM
Guests. To do so, you need to collect some data rst.

Note: The following procedure is using example data. Make sure to replace it by appro-
priate data from your setup.

1. Use the virsh nodedev-list command to get the PCI address of the VF you want
to assign and its corresponding PF. Numerical values from the lspci output shown
in Section 13.12.2, “Loading and Configuring the SR-IOV Host Drivers” (for example 01:00.0
or 04:00.1) are transformed by adding the prefix "pci_0000_" and by replacing colons
and dots with underscores. So a PCI ID listed as "04:00.0" by lspci is listed as
"pci_0000_04_00_0" by virsh. The following example lists the PCI IDs for the second port
of the Intel 82576NS network card:

tux > sudo virsh nodedev-list | grep 0000_04_
pci_0000_04_00_0
pci_0000_04_00_1
pci_0000_04_10_0
pci_0000_04_10_1
pci_0000_04_10_2
pci_0000_04_10_3
pci_0000_04_10_4
pci_0000_04_10_5
pci_0000_04_10_6
pci_0000_04_10_7
pci_0000_04_11_0
pci_0000_04_11_1
pci_0000_04_11_2
pci_0000_04_11_3
pci_0000_04_11_4
pci_0000_04_11_5

The rst two entries represent the PFs, whereas the other entries represent the VFs.

2. Get more data that will be needed by running the command virsh nodedev-dumpxml
on the PCI ID of the VF you want to add:

tux > sudo virsh nodedev-dumpxml pci_0000_04_10_0

136 Adding a VF Network Device to an Existing VM Guest openSUSE Leap 15.0

<device>
 <name>pci_0000_04_10_0</name>
 <parent>pci_0000_00_02_0</parent>
 <capability type='pci'>
 <domain>0</domain>
 <bus>4</bus>
 <slot>16</slot>
 <function>0</function>
 <product id='0x10ca'>82576 Virtual Function</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='phys_function'>
 <address domain='0x0000' bus='0x04' slot='0x00' function='0x0'/>
 </capability>
 </capability>
</device>

The following data is needed for the next step:

<domain>0</domain>

<bus>4</bus>

<slot>16</slot>

<function>0</function>

3. Create a temporary XML le (for example /tmp/vf-interface.xml containing the data
necessary to add a VF network device to an existing VM Guest. The minimal content of
the le needs to look like the following:

<interface type='hostdev'> 1

 <source>
 <address type='pci' domain='0' bus='11' slot='16' function='0'2/> 2

 </source>
</interface>

1 VFs do not get a xed MAC address; it changes every time the host reboots. When
adding network devices the “traditional” way with <hostdev>, it would require to
reconfigure the VM Guest's network device after each reboot of the host, because
of the MAC address change. To avoid this kind of problem, libvirt introduced the
“interface type='hostdev'” directive, which sets up network-specific data before as-
signing the device.

2 Specify the data you acquired in the previous step here.

137 Adding a VF Network Device to an Existing VM Guest openSUSE Leap 15.0

4. In case a device is already attached to the host, it cannot be attached to a guest. To make
it available for guests, detach it from the host rst:

tux > virsh nodedev-detach pci_0000_04_10_0

5. Last, add the VF interface to an existing VM Guest:

tux > virsh attach-device GUEST /tmp/vf-interface.xml --OPTION

GUEST needs to be replaced by the domain name, id or uuid of the VM Guest and -- OPTION
can be one of the following:

--persistent

This option will always add the device to the domain's persistent XML. In addition,
if the domain is running, it will be hotplugged.

--config

This option will only affect the persistent XML, even if the domain is running. The
device will only show up in the guest on next boot.

--live

This option will only affect a running domain. If the domain is inactive, the operation
will fail. The device is not persisted in the XML and will not be available in the guest
on next boot.

--current

This option affects the current state of the domain. If the domain is inactive, the
device is added to the persistent XML and will be available on next boot. If the
domain is active, the device is hotplugged but not added to the persistent XML.

To detach a VF interface, use the virsh detach-device command, which also takes the
options listed above.

13.12.4 Dynamic Allocation of VFs from a Pool

If you define the PCI address of a VF into a guest's configuration statically as described in Sec-

tion 13.12.3, “Adding a VF Network Device to an Existing VM Guest”, it is hard to migrate such guest to
another host. The host must have identical hardware in the same location on the PCI bus, or the
guest configuration must be modified prior to each start.

138 Dynamic Allocation of VFs from a Pool openSUSE Leap 15.0

Another approach is to create a libvirt network with a device pool that contains all the VFs
of an SR-IOV device. The guest then references this network, and each time it is started, a single
VF is dynamically allocated to it. When the guest is stopped, the VF is returned to the pool,
available for another guest.

13.12.4.1 Defining Network with Pool of VFs on VM Host Server

The following example of network definition creates a pool of all VFs for the SR-IOV device with
its physical function (PF) at the network interface eth0 on the host:

<network>
 <name>passthrough</name>
 <forward mode='hostdev' managed='yes'>
 <pf dev='eth0'/>
 </forward>
 </network>

To use this network on the host, save the above code to a le, for example /tmp/

passthrough.xml , and execute the following commands. Remember to replace eth0 with the
real network interface name of your SR-IOV device's PF:

tux > virsh net-define /tmp/passthrough.xml
tux > virsh net-autostart passthrough
tux > virsh net-start passthrough

13.12.4.2 Configuring VM Guest to Use VF from the Pool

The following example of guest device interface definition uses a VF of the SR-IOV device from
the pool created in Section 13.12.4.1, “Defining Network with Pool of VFs on VM Host Server”. libvirt
automatically derives the list of all VFs associated with that PF the rst time the guest is started.

<interface type='network'>
 <source network='passthrough'>
</interface>

To verify the list of associated VFs, run virsh net-dumpxml passthrough on the host after
the rst guest that uses the network with the pool of VFs starts.

<network connections='1'>

139 Dynamic Allocation of VFs from a Pool openSUSE Leap 15.0

 <name>passthrough</name>
 <uuid>a6a26429-d483-d4ed-3465-4436ac786437</uuid>
 <forward mode='hostdev' managed='yes'>
 <pf dev='eth0'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x1'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x5'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x7'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x1'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x5'/>
 </forward>
 </network>

13.13 Using Macvtap to Share VM Host Server
Network Interfaces
Macvtap provides direct attachment of a VM Guest virtual interface to a host network interface.
The macvtap-based interface extends the VM Host Server network interface and has its own
MAC address on the same Ethernet segment. Typically, this is used to make both the VM Guest
and the VM Host Server show up directly on the switch that the VM Host Server is connected to.

Note: Macvtap Cannot Be Used with a Linux Bridge
Macvtap cannot be used with network interfaces already connected to a Linux bridge.
Before attempting to create the macvtap interface, remove the interface from the bridge.

Note: VM Guest to VM Host Server Communication
with Macvtap
When using macvtap, a VM Guest can communicate with other VM Guests, and with other
external hosts on the network. But it cannot communicate with the VM Host Server on
which the VM Guest runs. This is the defined behavior of macvtap, because of the way
the VM Host Server's physical Ethernet is attached to the macvtap bridge. Traffic from the
VM Guest into that bridge that is forwarded to the physical interface cannot be bounced
back up to the VM Host Server's IP stack. Similarly, traffic from the VM Host Server's IP
stack that is sent to the physical interface cannot be bounced back up to the macvtap
bridge for forwarding to the VM Guest.

140 Using Macvtap to Share VM Host Server Network Interfaces openSUSE Leap 15.0

Virtual network interfaces based on macvtap are supported by libvirt by specifying an interface
type of direct . For example:

<interface type='direct'>
 <mac address='aa:bb:cc:dd:ee:ff'/>
 <source dev='eth0' mode='bridge'/>
 <model type='virtio'/>
 </interface>

The operation mode of the macvtap device can be controlled with the mode attribute. The
following lists show its possible values and a description for each:

vepa : All VM Guest packets are sent to an external bridge. Packets whose destination is
a VM Guest on the same VM Host Server as where the packet originates from are sent
back to the VM Host Server by the VEPA capable bridge (today's bridges are typically not
VEPA capable).

bridge : Packets whose destination is on the same VM Host Server as where they origi-
nate from are directly delivered to the target macvtap device. Both origin and destination
devices need to be in bridge mode for direct delivery. If either one of them is in vepa
mode, a VEPA capable bridge is required.

private : All packets are sent to the external bridge and will only be delivered to a target
VM Guest on the same VM Host Server if they are sent through an external router or
gateway and that device sends them back to the VM Host Server. This procedure is followed
if either the source or destination device is in private mode.

passthrough : A special mode that gives more power to the network interface. All packets
will be forwarded to the interface, allowing virtio VM Guests to change the MAC address or
set promiscuous mode to bridge the interface or create VLAN interfaces on top of it. Note
that a network interface is not shareable in passthrough mode. Assigning an interface
to a VM Guest will disconnect it from the VM Host Server. For this reason SR-IOV virtual
functions are often assigned to the VM Guest in passthrough mode.

141 Using Macvtap to Share VM Host Server Network Interfaces openSUSE Leap 15.0

III Hypervisor-Independent Features

14 Disk Cache Modes 143

15 VM Guest Clock Settings 147

16 libguestfs 149

14 Disk Cache Modes

14.1 Disk Interface Cache Modes

Hypervisors allow for various storage caching strategies to be specified when configuring a
VM Guest. Each guest disk interface can have one of the following cache modes specified:
writethrough, writeback, none, directsync, or unsafe. If no cache mode is specified, an appropriate
default cache mode is used. These cache modes influence how host-based storage is accessed,
as follows:

Read/write data may be cached in the host page cache.

The guest's storage controller is informed whether a write cache is present, allowing for
the use of a ush command.

Synchronous write mode may be used, in which write requests are reported complete only
when committed to the storage device.

Flush commands (generated by the guest storage controller) may be ignored for perfor-
mance reasons.

If a disorderly disconnection between the guest and its storage occurs, the cache mode in use will
affect whether data loss occurs. The cache mode can also affect disk performance significantly.
Additionally, some cache modes are incompatible with live migration, depending on several
factors. There are no simple rules about what combination of cache mode, disk image format,
image placement, or storage sub-system is best. The user should plan each guest's configuration
carefully and experiment with various configurations to determine the optimal performance.

14.2 Description of Cache Modes

cache mode unspecified

In older QEMU versions, not specifying a cache mode meant that writethrough would be
used as the default. With modern versions—as shipped with openSUSE Leap—the various
guest storage interfaces have been xed to handle writeback or writethrough semantics more
correctly. This allows for the default caching mode to be switched to writeback. The guest

143 Disk Interface Cache Modes openSUSE Leap 15.0

driver for each of ide , scsi , and virtio have within their power to disable the write
back cache, causing the caching mode used to revert to writethrough. The typical guest's
storage drivers will maintain the default caching mode as writeback, however.

writethrough

This mode causes the hypervisor to interact with the disk image le or block device
with O_DSYNC semantics. Writes are reported as completed only when the data has been
committed to the storage device. The host page cache is used in what can be termed a
writethrough caching mode. The guest's virtual storage adapter is informed that there is
no writeback cache, so the guest would not need to send down ush commands to manage
data integrity. The storage behaves as if there is a writethrough cache.

writeback

This mode causes the hypervisor to interact with the disk image le or block device with
neither O_DSYNC nor O_DIRECT semantics. The host page cache is used and writes are
reported to the guest as completed when they are placed in the host page cache. The normal
page cache management will handle commitment to the storage device. Additionally, the
guest's virtual storage adapter is informed of the writeback cache, so the guest would be
expected to send down ush commands as needed to manage data integrity. Analogous to
a raid controller with RAM cache.

none

This mode causes the hypervisor to interact with the disk image le or block device with
O_DIRECT semantics. The host page cache is bypassed and I/O happens directly between
the hypervisor user space buers and the storage device. Because the actual storage device
may report a write as completed when placed in its write queue only, the guest's virtual
storage adapter is informed that there is a writeback cache. The guest would be expected
to send down ush commands as needed to manage data integrity. Performance-wise, it
is equivalent to direct access to your host's disk.

unsafe

This mode is similar to the writeback mode discussed above. The key aspect of this
“unsafe” mode, is that all ush commands from the guests are ignored. Using this mode
implies that the user has accepted the trade-o of performance over risk of data loss in
case of a host failure. Useful, for example, during guest installation, but not for production
workloads.

directsync

144 Description of Cache Modes openSUSE Leap 15.0

This mode causes the hypervisor to interact with the disk image le or block device with
both O_DSYNC and O_DIRECT semantics. This means, writes are reported as completed
only when the data has been committed to the storage device, and when it is also desirable
to bypass the host page cache. Like writethrough, it is helpful to guests that do not send
flushes when needed. It was the last cache mode added, completing the possible combina-
tions of caching and direct access semantics.

14.3 Data Integrity Implications of Cache Modes
writethrough, none, directsync

These are the safest modes, and considered equally safe, given that the guest operating
system is “modern and well behaved”, which means that it uses flushes as needed. If you
have a suspect guest, use writethough, or directsync. Note that some le systems are not
compatible with none or directsync , as they do not support O_DIRECT, which these
cache modes rely on.

writeback

This mode informs the guest of the presence of a write cache, and relies on the guest to
send ush commands as needed to maintain data integrity within its disk image. This is
a common storage design which is completely accounted for within modern le systems.
This mode exposes the guest to data loss in the unlikely case of a host failure, because
there is a window of time between the time a write is reported as completed, and that
write being committed to the storage device.

unsafe

This mode is similar to writeback caching except for the following: the guest ush com-
mands are ignored, nullifying the data integrity control of these ush commands, and re-
sulting in a higher risk of data loss because of host failure. The name “unsafe” should serve
as a warning that there is a much higher potential for data loss because of a host failure
than with the other modes. As the guest terminates, the cached data is ushed at that time.

14.4 Performance Implications of Cache Modes
The choice to make full use of the page cache, or to write through it, or to bypass it altogether can
have dramatic performance implications. Other factors that influence disk performance include
the capabilities of the actual storage system, what disk image format is used, the potential size

145 Data Integrity Implications of Cache Modes openSUSE Leap 15.0

of the page cache and the IO scheduler used. Additionally, not flushing the write cache increases
performance, but with risk, as noted above. As a general rule, high-end systems typically perform
best with the cache mode none , because of the reduced data copying that occurs. The potential
benefit of having multiple guests share the common host page cache, the ratio of reads to writes,
and the use of AIO mode native (see below) should also be considered.

14.5 Effect of Cache Modes on Live Migration
The caching of storage data and metadata restricts the configurations that support live migration.
Currently, only raw , and qcow2 image formats can be used for live migration. If a clustered
le system is used, all cache modes support live migration. Otherwise the only cache mode that
supports live migration on read/write shared storage is none .

The libvirt management layer includes checks for migration compatibility based on several
factors. If the guest storage is hosted on a clustered le system, is read-only or is marked share-
able, then the cache mode is ignored when determining if migration can be allowed. Otherwise
libvirt will not allow migration unless the cache mode is set to none . However, this restric-
tion can be overridden with the “unsafe” option to the migration APIs, which is also supported
by virsh , as for example in

tux > virsh migrate --live --unsafe

Tip
The cache mode none is required for the AIO mode setting native . If another cache
mode is used, then the AIO mode will silently be switched back to the default threads .
The guest ush within the host is implemented using fdatasync() .

146 Effect of Cache Modes on Live Migration openSUSE Leap 15.0

15 VM Guest Clock Settings

Keeping the correct time in a VM Guest is one of the more difficult aspects of virtu-
alization. Keeping the correct time is especially important for network applications
and is also a prerequisite to do a live migration of a VM Guest.

Tip: Timekeeping on the VM Host Server
It is strongly recommended to ensure the VM Host Server keeps the correct time as well,
for example, by using NTP (see Book “Reference”, Chapter 18 “Time Synchronization with NTP”

for more information).

15.1 KVM: Using kvm_clock
KVM provides a paravirtualized clock which is supported via the kvm_clock driver. It is strongly
recommended to use kvm_clock .

Use the following command inside a VM Guest running Linux to check whether the driver
kvm_clock has been loaded:

tux > sudo dmesg | grep kvm-clock
[0.000000] kvm-clock: cpu 0, msr 0:7d3a81, boot clock
[0.000000] kvm-clock: cpu 0, msr 0:1206a81, primary cpu clock
[0.012000] kvm-clock: cpu 1, msr 0:1306a81, secondary cpu clock
[0.160082] Switching to clocksource kvm-clock

To check which clock source is currently used, run the following command in the VM Guest.
It should output kvm-clock :

tux > cat /sys/devices/system/clocksource/clocksource0/current_clocksource

Important: kvm-clock and NTP
When using kvm-clock , it is recommended to use NTP in the VM Guest, as well. Using
NTP on the VM Host Server is also recommended.

147 KVM: Using kvm_clock openSUSE Leap 15.0

15.1.1 Other Timekeeping Methods

The paravirtualized kvm-clock is currently not for Windows* operating systems. For Win-
dows*, use the Windows Time Service Tools for time synchronization (see http://technet.mi-

crosoft.com/en-us/library/cc773263%28WS.10%29.aspx for more information).

15.2 Xen Virtual Machine Clock Settings
With Xen 4, the independent wallclock setting /proc/sys/xen/independent_wallclock used
for time synchronization between Xen host and guest was removed. A new configuration option
tsc_mode was introduced. It specifies a method of utilizing the timestamp counter to synchronize
the guest time with the Xen server. Its default value '0' handles the vast majority of hardware
and software environments.

For more details on tsc_mode , see the xen-tscmode manual page (man 7 xen-tscmode).

148 Other Timekeeping Methods openSUSE Leap 15.0

http://technet.microsoft.com/en-us/library/cc773263%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc773263%28WS.10%29.aspx

16 libguestfs

Virtual Machines consist of disk images and definition les. Manually accessing and
manipulating these guest components (outside of normal hypervisor processes) is
possible, but inherently dangerous and risks compromising data integrity. libguestfs
is a C library and a corresponding set of tools designed for safely accessing and
modifying Virtual Machine disk images—outside of normal hypervisor processes, but
without the risk normally associated with manual editing.

16.1 VM Guest Manipulation Overview

16.1.1 VM Guest Manipulation Risk

As disk images and definition les are simply another type of le in a Linux environment, it
is possible to use many tools to access, edit and write to these les. When used correctly, such
tools can be an important part of guest administration. However, even correct usage of these
tools is not without risk. Risks that should be considered when manually manipulating guest
disk images include:

Data Corruption: Concurrently accessing images, by the host machine or another node in a
cluster, can cause changes to be lost or data corruption to occur if virtualization protection
layers are bypassed.

Security: Mounting disk images as loop devices requires root access. While an image is loop
mounted, other users and processes can potentially access the disk contents.

Administrator Error: Bypassing virtualization layers correctly requires advanced under-
standing of virtual components and tools. Failing to isolate the images or failing to clean
up properly after changes have been made can lead to further problems once back in vir-
tualization control.

149 VM Guest Manipulation Overview openSUSE Leap 15.0

16.1.2 libguestfs Design

libguestfs C library has been designed to safely and securely create, access and modify vir-
tual machine (VM Guest) disk images. It also provides additional language bindings: for Perl

(http://libguestfs.org/guestfs-perl.3.html) , Python (http://libguestfs.org/guestfs-python.3.html) ,
PHP (only for 64-bit machines), and Ruby (http://libguestfs.org/guestfs-ruby.3.html) . libguestfs
can access VM Guest disk images without needing root and with multiple layers of defense
against rogue disk images.

libguestfs provides many tools designed for accessing and modifying VM Guest disk images
and contents. These tools provide such capabilities as: viewing and editing les inside guests,
scripting changes to VM Guests, monitoring disk used/free statistics, creating guests, doing V2V
or P2V migrations, performing backups, cloning VM Guests, formatting disks, and resizing disks.

Warning: Best Practices
You must not use libguestfs tools on live virtual machines. Doing so will probably result
in disk corruption in the VM Guest. libguestfs tools try to stop you from doing this, but
cannot catch all cases.

However most command have the --ro (read-only) option. With this option, you can
attach a command to a live virtual machine. The results might be strange or inconsistent
at times but you will not risk disk corruption.

16.2 Package Installation
libguestfs is shipped through 4 packages:

libguestfs0 : which provides the main C library

guestfs-data : which contains the appliance les used when launching images (stored
in /usr/lib64/guestfs)

guestfs-tools : the core guestfs tools, man pages, and the /etc/libguestfs-tool-
s.conf configuration le.

guestfs-winsupport : provides support for Windows le guests in the guestfs tools. This
package only needs to be installed to handle Windows guests, for example when converting
a Windows guest to KVM.

150 libguestfs Design openSUSE Leap 15.0

http://libguestfs.org/guestfs-perl.3.html
http://libguestfs.org/guestfs-perl.3.html
http://libguestfs.org/guestfs-python.3.html
http://libguestfs.org/guestfs-ruby.3.html

To install guestfs tools on your system run:

tux > sudo zypper in guestfs-tools

16.3 Guestfs Tools

16.3.1 Modifying Virtual Machines

The set of tools found within the guestfs-tools package is used for accessing and modifying virtual
machine disk images. This functionality is provided through a familiar shell interface with built-
in safeguards which ensure image integrity. Guestfs tools shells expose all capabilities of the
guestfs API, and create an appliance on the y using the packages installed on the machine and
the les found in /usr/lib4/guestfs .

16.3.2 Supported File Systems and Disk Images

Guestfs tools support various le systems including:

Ext2, Ext3, Ext4

Xfs

Btrfs

Multiple disk image formats are also supported:

raw

qcow2

Warning: Unsupported File System
Guestfs may also support Windows* le systems (VFAT, NTFS), BSD* and Apple* le
systems, and other disk image formats (VMDK, VHDX...). However, these le systems and
disk image formats are unsupported on openSUSE Leap.

151 Guestfs Tools openSUSE Leap 15.0

16.3.3 virt-rescue

virt-rescue is similar to a rescue CD, but for virtual machines, and without the need for a
CD. virt-rescue presents users with a rescue shell and some simple recovery tools which can be
used to examine and correct problems within a virtual machine or disk image.

tux > virt-rescue -a sles.qcow2
Welcome to virt-rescue, the libguestfs rescue shell.

Note: The contents of / are the rescue appliance.
You need to mount the guest's partitions under /sysroot
before you can examine them. A helper script for that exists:
mount-rootfs-and-do-chroot.sh /dev/sda2

><rescue>
[67.194384] EXT4-fs (sda1): mounting ext3 file system
using the ext4 subsystem
[67.199292] EXT4-fs (sda1): mounted filesystem with ordered data
mode. Opts: (null)
mount: /dev/sda1 mounted on /sysroot.
mount: /dev bound on /sysroot/dev.
mount: /dev/pts bound on /sysroot/dev/pts.
mount: /proc bound on /sysroot/proc.
mount: /sys bound on /sysroot/sys.
Directory: /root
Thu Jun 5 13:20:51 UTC 2014
(none):~ #

You are now running the VM Guest in rescue mode:

(none):~ # cat /etc/fstab
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
tmpfs /run tmpfs noauto 0 0
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1 / ext3 defaults 1 1

16.3.4 virt-resize

virt-resize is used to resize a virtual machine disk, making it larger or smaller overall, and
resizing or deleting any partitions contained within.

152 virt-rescue openSUSE Leap 15.0

PROCEDURE 16.1: EXPANDING A DISK

Full step-by-step example: How to expand a virtual machine disk

1. First, with virtual machine powered o, determine the size of the partitions available on
this virtual machine:

tux > virt-filesystems --long --parts --blkdevs -h -a sles.qcow2
Name Type MBR Size Parent
/dev/sda1 partition 83 16G /dev/sda
/dev/sda device - 16G -

2. virt-resize cannot do in-place disk modifications—there must be sufficient space to
store the resized output disk. Use the truncate command to create a le of suitable size:

tux > truncate -s 32G outdisk.img

3. Use virt-resize to resize the disk image. virt-resize requires two mandatory para-
meters for the input and output images:

tux > virt-resize --expand /dev/sda1 sles.qcow2 outdisk.img
Examining sles.qcow2 ...

Summary of changes:

/dev/sda1: This partition will be resized from 16,0G to 32,0G. The
 filesystem ext3 on /dev/sda1 will be expanded using the 'resize2fs'
 method.

Setting up initial partition table on outdisk.img ...
Copying /dev/sda1 ...
◐ 84%
⟦▒▒════════⟧ 00:03
Expanding /dev/sda1 using the 'resize2fs' method ...

Resize operation completed with no errors. Before deleting the old
disk, carefully check that the resized disk boots and works correctly.

4. Confirm the image was resized properly:

tux > virt-filesystems --long --parts --blkdevs -h -a outdisk.img
Name Type MBR Size Parent
/dev/sda1 partition 83 32G /dev/sda
/dev/sda device - 32G -

153 virt-resize openSUSE Leap 15.0

5. Bring up the VM Guest using the new disk image and confirm correct operation before
deleting the old image.

16.3.5 Other virt-* Tools

There are guestfs tools to simplify administrative tasks—such as viewing and editing les, or
obtaining information on the virtual machine.

16.3.5.1 virt-filesystems

This tool is used to report information regarding le systems, partitions, and logical volumes
in a disk image or virtual machine.

tux > virt-filesystems -l -a sles.qcow2
Name Type VFS Label Size Parent
/dev/sda1 filesystem ext3 - 17178820608 -

16.3.5.2 virt-ls

virt-ls lists le names, le sizes, checksums, extended attributes and more from a virtual
machine or disk image. Multiple directory names can be given, in which case the output from
each is concatenated. To list directories from a libvirt guest, use the -d option to specify the
name of the guest. For a disk image, use the -a option.

tux > virt-ls -h -lR -a sles.qcow2 /var/log/
d 0755 776 /var/log
- 0640 0 /var/log/NetworkManager
- 0644 23K /var/log/Xorg.0.log
- 0644 23K /var/log/Xorg.0.log.old
d 0700 482 /var/log/YaST2
- 0644 512 /var/log/YaST2/_dev_vda
- 0644 59 /var/log/YaST2/arch.info
- 0644 473 /var/log/YaST2/config_diff_2017_05_03.log
- 0644 5.1K /var/log/YaST2/curl_log
- 0644 1.5K /var/log/YaST2/disk_vda.info
- 0644 1.4K /var/log/YaST2/disk_vda.info-1
[...]

154 Other virt-* Tools openSUSE Leap 15.0

16.3.5.3 virt-cat

virt-cat is a command line tool to display the contents of a le that exists in the named virtual
machine (or disk image). Multiple le names can be given, in which case they are concatenated
together. Each le name must be a full path, starting at the root directory (starting with '/').

tux > virt-cat -a sles.qcow2 /etc/fstab
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0

16.3.5.4 virt-df

virt-df is a command line tool to display free space on virtual machine le systems. Unlike
other tools, it not only displays the size of disk allocated to a virtual machine, but can look
inside disk images to show how much space is actually being used.

tux > virt-df -a sles.qcow2
Filesystem 1K-blocks Used Available Use%
sles.qcow2:/dev/sda1 16381864 520564 15022492 4%

16.3.5.5 virt-edit

virt-edit is a command line tool capable of editing les that reside in the named virtual
machine (or disk image).

16.3.5.6 virt-tar-in/out

virt-tar-in unpacks an uncompressed TAR archive into a virtual machine disk image or
named libvirt domain. virt-tar-out packs a virtual machine disk image directory into a TAR
archive.

tux > virt-tar-out -a sles.qcow2 /home homes.tar

16.3.5.7 virt-copy-in/out

virt-copy-in copies les and directories from the local disk into a virtual machine disk image
or named libvirt domain. virt-copy-out copies les and directories out of a virtual machine
disk image or named libvirt domain.

155 Other virt-* Tools openSUSE Leap 15.0

tux > virt-copy-in -a sles.qcow2 data.tar /tmp/
virt-ls -a sles.qcow2 /tmp/
.ICE-unix
.X11-unix
data.tar

16.3.5.8 virt-log

virt-log shows the log les of the named libvirt domain, virtual machine or disk image. If the
package guestfs-winsupport is installed it can also show the event log of a Windows virtual
machine disk image.

tux > virt-log -a windows8.qcow2
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<Events>
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"><System><Provider
 Name="EventLog"></Provider>
<EventID Qualifiers="32768">6011</EventID>
<Level>4</Level>
<Task>0</Task>
<Keywords>0x0080000000000000</Keywords>
<TimeCreated SystemTime="2014-09-12 05:47:21"></TimeCreated>
<EventRecordID>1</EventRecordID>
<Channel>System</Channel>
<Computer>windows-uj49s6b</Computer>
<Security UserID=""></Security>
</System>
<EventData><Data><string>WINDOWS-UJ49S6B</string>
<string>WIN-KG190623QG4</string>
</Data>
<Binary></Binary>
</EventData>
</Event>

...

16.3.6 guestfish

guestfish is a shell and command line tool for examining and modifying virtual machine le
systems. It uses libguestfs and exposes all of the functionality of the guestfs API.

156 guestfish openSUSE Leap 15.0

Examples of usage:

tux > guestfish -a disk.img <<EOF
run
list-filesystems
EOF

guestfish

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

><fs> add sles.qcow2
><fs> run
><fs> list-filesystems
/dev/sda1: ext3
><fs> mount /dev/sda1 /
 cat /etc/fstab
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
tmpfs /run tmpfs noauto 0 0
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1 / ext3 defaults 1 1

16.3.7 Converting a Physical Machine into a KVM Guest

Libguestfs provides tools to help converting Xen virtual machines or physical machines into
KVM guests. The following section will cover a special use case: converting a bare metal machine
into a KVM one.

Converting a physical machine into a KVM one is not yet supported in openSUSE Leap. This
feature is released as a technology preview only.

Converting a physical machine requires collecting information about it and transmitting this to
a conversion server. This is achieved by running a live system prepared with virt-p2v and
kiwi tools on the machine.

157 Converting a Physical Machine into a KVM Guest openSUSE Leap 15.0

PROCEDURE 16.2: USING VIRT-P2V

1. Install the needed packages with the command:

tux > sudo zypper in virt-p2v kiwi-desc-isoboot

Note
These steps will document how to create an ISO image to create a bootable DVD.
Alternatively, you can create a PXE boot image instead; for more information about
building PXE images with KIWI, see man virt-p2v-make-kiwi .

2. Create a KIWI configuration:

tux > virt-p2v-make-kiwi -o /tmp/p2v.kiwi

The -o defines where to create the KIWI configuration.

3. Edit the config.xml le in the generated configuration if needed. For example, in con-
fig.xml adjust the keyboard layout of the live system.

4. Build the ISO image with kiwi :

tux > kiwi --build /tmp/p2v.kiwi 1 \
 -d /tmp/build 2 \
 --ignore-repos \
 --add-repo http://URL/TO/SLE/REPOSITORIES 3 \
 --type iso

1 The directory where the KIWI configuration was generated in the previous step.

2 The directory where KIWI will place the generated ISO image and other intermediary
build results.

3 The URLs to the package repositories as found with zypper lr -d .
Use one --add-repo parameter per repository.

5. Burn the ISO on a DVD or a USB stick. With such a medium, boot the machine to be
converted.

6. After the system is started, you will be asked for the connection details of the conversion
server. This server is a machine with the virt-v2v package installed.
If the network setup is more complex than a DHCP client, click the Configure network
button to open the YaST network configuration dialog.

158 Converting a Physical Machine into a KVM Guest openSUSE Leap 15.0

Click the Test connection button to allow moving to the next page of the wizard.

7. Select the disks and network interfaces to be converted and define the VM data like the
amount of allocated CPUs, memory and the Virtual Machine name.

Note
If not defined, the created disk image format will be raw by default. This can be
changed by entering the desired format in the Output format eld.

There are two possibilities to generate the virtual machine: either using the local or the
libvirt output. The rst one will place the Virtual Machine disk image and configuration
in the path defined in the Output storage eld. These can then be used to define a new
libvirt-handled guest using virsh . The second method will create a new libvirt-handled
guest with the disk image placed in the pool defined in the Output storage eld.
Click Start conversion to start it.

16.4 Troubleshooting

16.4.1 Btrfs-related Problems

When using the guestfs tools on an image with Btrfs root partition (the default with openSUSE
Leap) the following error message may be displayed:

tux > virt-ls -a /path/to/sles12sp2.qcow2 /
virt-ls: multi-boot operating systems are not supported

If using guestfish '-i' option, remove this option and instead
use the commands 'run' followed by 'list-filesystems'.
You can then mount filesystems you want by hand using the
'mount' or 'mount-ro' command.

If using guestmount '-i', remove this option and choose the
filesystem(s) you want to see by manually adding '-m' option(s).
Use 'virt-filesystems' to see what filesystems are available.

If using other virt tools, multi-boot operating systems won't work
with these tools. Use the guestfish equivalent commands
(see the virt tool manual page).

159 Troubleshooting openSUSE Leap 15.0

This is usually caused by the presence of snapshots in the guests. In this case guestfs does not
know which snapshot to bootstrap. To force the use of a snapshot, use the -m parameter as
follows:

tux > virt-ls -m /dev/sda2:/:subvol=@/.snapshots/2/snapshot -a /path/to/sles12sp2.qcow2 /

16.4.2 Environment

When troubleshooting problems within a libguestfs appliance, the environment variable
LIBGUESTFS_DEBUG=1 can be used to enable debug messages. To output each command/API
call in a format that is similar to guestfish commands, use the environment variable LIBGUEST-
FS_TRACE=1.

16.4.3 libguestfs-test-tool

libguestfs-test-tool is a test program that checks if basic libguestfs functionality is work-
ing. It will print a large amount of diagnostic messages and details of the guestfs environment,
then create a test image and try to start it. If it runs to completion successfully, the following
message should be seen near the end:

===== TEST FINISHED OK =====

16.5 External References

libguestfs.org (http://libguestfs.org)

libguestfs FAQ (http://libguestfs.org/guestfs-faq.1.html)

160 Environment openSUSE Leap 15.0

http://libguestfs.org
http://libguestfs.org/guestfs-faq.1.html

IV Managing Virtual Machines with Xen

17 Setting Up a Virtual Machine Host 162

18 Virtual Networking 173

19 Managing a Virtualization Environment 182

20 Block Devices in Xen 188

21 Virtualization: Configuration Options and Settings 192

22 Administrative Tasks 201

23 XenStore: Configuration Database Shared between Domains 209

24 Xen as a High-Availability Virtualization Host 214

17 Setting Up a Virtual Machine Host

This section documents how to set up and use openSUSE Leap 15.0 as a virtual machine host.

Usually, the hardware requirements for the Dom0 are the same as those for the openSUSE Leap
operating system. Additional CPU, disk, memory, and network resources should be added to
accommodate the resource demands of all planned VM Guest systems.

Tip: Resources
Remember that VM Guest systems, like physical machines, perform better when they run
on faster processors and have access to more system memory.

The virtual machine host requires several software packages and their dependencies to be in-
stalled. To install all necessary packages, run YaST Software Management, select View Patterns
and choose Xen Virtual Machine Host Server for installation. The installation can also be per-
formed with YaST using the module Virtualization Install Hypervisor and Tools.

After the Xen software is installed, restart the computer and, on the boot screen, choose the
newly added option with the Xen kernel.

Updates are available through your update channel. To be sure to have the latest updates in-
stalled, run YaST Online Update after the installation has finished.

17.1 Best Practices and Suggestions
When installing and configuring the openSUSE Leap operating system on the host, be aware of
the following best practices and suggestions:

If the host should always run as Xen host, run YaST System Boot Loader and activate the
Xen boot entry as default boot section.

In YaST, click System > Boot Loader.

Change the default boot to the Xen label, then click Set as Default.

Click Finish.

For best performance, only the applications and processes required for virtualization
should be installed on the virtual machine host.

162 Best Practices and Suggestions openSUSE Leap 15.0

When using both iSCSI and OCFS2 to host Xen images, the latency required for OCFS2
default timeouts in openSUSE Leap may not be met. To reconfigure this timeout, run sys-
temctl configure o2cb or edit O2CB_HEARTBEAT_THRESHOLD in the system configura-
tion.

If you intend to use a watchdog device attached to the Xen host, use only one at a time. It is
recommended to use a driver with actual hardware integration over a generic software one.

Note: Hardware Monitoring
The Dom0 kernel is running virtualized, so tools like irqbalance or lscpu will not
reflect the real hardware characteristics.

17.2 Managing Dom0 Memory

In a default Xen installation, a small percentage of system memory is reserved for the hypervi-
sor, and all remaining memory is automatically allocated to Dom0. When virtual machines are
created, memory is ballooned out of Dom0 to provide memory for the virtual machine. This
process is called "autoballooning".

SUSE recommends disabling autoballooning and configuring Dom0 with adequate memory. Gen-
erally 10 percent of the total system memory is sufficient, with a minimum of 1 GiB and a
maximum of 64 GiB.

Warning: Insufficient Memory for Dom0
The amount of memory reserved for Dom0 is a function of the number of VM Guests
running on the host since Dom0 provides back-end network and disk I/O services for each
VM Guest. Other workloads running in Dom0 should also be considered when calculating
Dom0 memory allocation. In general, memory sizing of Dom0 should be determined like
any other virtual machine.

17.2.1 Setting Dom0 Memory Allocation

1. Determine memory allocation required for Dom0.

163 Managing Dom0 Memory openSUSE Leap 15.0

2. At Dom0, type xl info to view the amount of memory that is available on the machine.
Dom0's current memory allocation can be determined with the xl list command.

3. Run YaST Boot Loader.

4. Select the Xen section.

5. In Additional Xen Hypervisor Parameters, add dom0_mem=MEM_AMOUNT where MEM_AMOUNT
is the maximum amount of memory to allocate to Dom0. Add K , M , or G , to specify the
size, for example, dom0_mem=2G .

6. Restart the computer to apply the changes.

Warning: Xen Dom0 Memory
When using the XL tool stack and the dom0_mem= option for the Xen hypervisor in
GRUB 2 you need to disable xl autoballoon in etc/xen/xl.conf . Otherwise launch-
ing VMs will fail with errors about not being able to balloon down Dom0. So add
autoballoon=0 to xl.conf if you have the dom0_mem= option specified for Xen. Al-
so see Xen dom0 memory (http://wiki.xen.org/wiki/Xen_Best_Practices#Xen_dom0_dedicat-

ed_memory_and_preventing_dom0_memory_ballooning)

17.3 Network Card in Fully Virtualized Guests
In a fully virtualized guest, the default network card is an emulated Realtek network card.
However, it also possible to use the split network driver to run the communication between
Dom0 and a VM Guest. By default, both interfaces are presented to the VM Guest, because the
drivers of some operating systems require both to be present.

When using openSUSE Leap, only the paravirtualized network cards are available for the VM
Guest by default. The following network options are available:

emulated

To use an emulated network interface like an emulated Realtek card, specify type=ioemu
in the vif device section of the domain xl configuration. An example configuration would
look like:

vif = ['type=ioemu,mac=00:16:3e:5f:48:e4,bridge=br0']

164 Network Card in Fully Virtualized Guests openSUSE Leap 15.0

http://wiki.xen.org/wiki/Xen_Best_Practices#Xen_dom0_dedicated_memory_and_preventing_dom0_memory_ballooning
http://wiki.xen.org/wiki/Xen_Best_Practices#Xen_dom0_dedicated_memory_and_preventing_dom0_memory_ballooning

Find more details about the xl configuration in the xl.conf manual page man 5 xl.conf .

paravirtualized

When you specify type=vif and do not specify a model or type, the paravirtualized net-
work interface is used:

vif = ['type=vif,mac=00:16:3e:5f:48:e4,bridge=br0,backen=0']

emulated and paravirtualized

If the administrator should be offered both options, simply specify both type and model.
The xl configuration would look like:

vif = ['type=ioemu,mac=00:16:3e:5f:48:e4,model=rtl8139,bridge=br0']

In this case, one of the network interfaces should be disabled on the VM Guest.

17.4 Starting the Virtual Machine Host

If virtualization software is correctly installed, the computer boots to display the GRUB 2 boot
loader with a Xen option on the menu. Select this option to start the virtual machine host.

Note: Xen and Kdump
In Xen, the hypervisor manages the memory resource. If you need to reserve system mem-
ory for a recovery kernel in Dom0, this memory need to be reserved by the hypervisor.
Thus, it is necessary to add the parameter crashkernel=size to the kernel line instead
of using the line with the other boot parameters.

For more information on the crashkernel parameter, see Book “System Analysis and Tuning

Guide”, Chapter 17 “Kexec and Kdump”, Section 17.4 “Calculating crashkernel Allocation Size”.

If the Xen option is not on the GRUB 2 menu, review the steps for installation and verify that
the GRUB 2 boot loader has been updated. If the installation has been done without selecting
the Xen pattern, run the YaST Software Management, select the filter Patterns and choose Xen
Virtual Machine Host Server for installation.

After booting the hypervisor, the Dom0 virtual machine starts and displays its graphical desktop
environment. If you did not install a graphical desktop, the command line environment appears.

165 Starting the Virtual Machine Host openSUSE Leap 15.0

Tip: Graphics Problems
Sometimes it may happen that the graphics system does not work properly. In this case,
add vga=ask to the boot parameters. To activate permanent settings, use vga=mod-
e-0x??? where ??? is calculated as 0x100 + VESA mode from http://en.wikipedi-

a.org/wiki/VESA_BIOS_Extensions , for example vga=mode-0x361 .

Before starting to install virtual guests, make sure that the system time is correct. To do this,
configure NTP (Network Time Protocol) on the controlling domain:

1. In YaST select Network Services NTP Configuration.

2. Select the option to automatically start the NTP daemon during boot. Provide the IP ad-
dress of an existing NTP time server, then click Finish.

Note: Time Services on Virtual Guests
Hardware clocks commonly are not very precise. All modern operating systems try to
correct the system time compared to the hardware time by means of an additional time
source. To get the correct time on all VM Guest systems, also activate the network time
services on each respective guest or make sure that the guest uses the system time of the
host. For more about Independent Wallclocks in openSUSE Leap see Section 15.2, “Xen

Virtual Machine Clock Settings”.

For more information about managing virtual machines, see Chapter 19, Managing a Virtualization

Environment.

17.5 PCI Pass-Through
To take full advantage of VM Guest systems, it is sometimes necessary to assign specific PCI
devices to a dedicated domain. When using fully virtualized guests, this functionality is only
available if the chipset of the system supports this feature, and if it is activated from the BIOS.

This feature is available from both AMD* and Intel*. For AMD machines, the feature is called
IOMMU; in Intel speak, this is VT-d. Note that Intel-VT technology is not sufficient to use this
feature for fully virtualized guests. To make sure that your computer supports this feature, ask
your supplier specifically to deliver a system that supports PCI Pass-Through.

166 PCI Pass-Through openSUSE Leap 15.0

http://en.wikipedia.org/wiki/VESA_BIOS_Extensions
http://en.wikipedia.org/wiki/VESA_BIOS_Extensions

LIMITATIONS

Some graphics drivers use highly optimized ways to access DMA. This is not supported,
and thus using graphics cards may be difficult.

When accessing PCI devices behind a PCIe bridge, all of the PCI devices must be assigned
to a single guest. This limitation does not apply to PCIe devices.

Guests with dedicated PCI devices cannot be migrated live to a different host.

The configuration of PCI Pass-Through is twofold. First, the hypervisor must be informed at
boot time that a PCI device should be available for reassigning. Second, the PCI device must
be assigned to the VM Guest.

17.5.1 Configuring the Hypervisor for PCI Pass-Through

1. Select a device to reassign to a VM Guest. To do this, run lspci -k , and read the device
number and the name of the original module that is assigned to the device:

06:01.0 Ethernet controller: Intel Corporation Ethernet Connection I217-LM (rev 05)
 Subsystem: Dell Device 0617
 Kernel driver in use: e1000e
 Kernel modules: e1000e

In this case, the PCI number is (06:01.0) and the dependent kernel module is e1000e .

2. Specify a module dependency to ensure that xen_pciback is the rst module to control
the device. Add the le named /etc/modprobe.d/50-e1000e.conf with the following
content:

install e1000e /sbin/modprobe xen_pciback ; /sbin/modprobe \
 --first-time --ignore-install e1000e

3. Instruct the xen_pciback module to control the device using the 'hide' option. Edit or
create /etc/modprobe.d/50-xen-pciback.conf with the following content:

options xen_pciback hide=(06:01.0)

4. Reboot the system.

5. Check if the device is in the list of assignable devices with the command

167 Configuring the Hypervisor for PCI Pass-Through openSUSE Leap 15.0

xl pci-assignable-list

17.5.1.1 Dynamic Assignment with xl

To avoid restarting the host system, you can use dynamic assignment with xl to use PCI Pass-
Through.

Begin by making sure that dom0 has the pciback module loaded:

tux > sudo modprobe pciback

Then make a device assignable by using xl pci-assignable-add . For example, to make the
device 06:01.0 available for guests, run the command:

tux > sudo xl pci-assignable-add 06:01.0

17.5.2 Assigning PCI Devices to VM Guest Systems

There are several possibilities to dedicate a PCI device to a VM Guest:

Adding the device while installing:

During installation, add the pci line to the configuration le:

pci=['06:01.0']

Hotplugging PCI devices to VM Guest systems

The command xl can be used to add or remove PCI devices on the y. To add the device
with number 06:01.0 to a guest with name sles12 use:

xl pci-attach sles12 06:01.0

Adding the PCI device to Xend

To add the device to the guest permanently, add the following snippet to the guest con-
figuration le:

pci = ['06:01.0,power_mgmt=1,permissive=1']

After assigning the PCI device to the VM Guest, the guest system must care for the configuration
and device drivers for this device.

168 Assigning PCI Devices to VM Guest Systems openSUSE Leap 15.0

17.5.3 VGA Pass-Through

Xen 4.0 and newer supports VGA graphics adapter pass-through on fully virtualized VM Guests.
The guest can take full control of the graphics adapter with high-performance full 3D and video
acceleration.

LIMITATIONS

VGA Pass-Through functionality is similar to PCI Pass-Through and as such also requires
IOMMU (or Intel VT-d) support from the mainboard chipset and BIOS.

Only the primary graphics adapter (the one that is used when you power on the computer)
can be used with VGA Pass-Through.

VGA Pass-Through is supported only for fully virtualized guests. Paravirtual guests (PV)
are not supported.

The graphics card cannot be shared between multiple VM Guests using VGA Pass-Through
— you can dedicate it to one guest only.

To enable VGA Pass-Through, add the following settings to your fully virtualized guest config-
uration le:

gfx_passthru=1
pci=['yy:zz.n']

where yy:zz.n is the PCI controller ID of the VGA graphics adapter as found with lspci -
v on Dom0.

17.5.4 Troubleshooting

In some circumstances, problems may occur during the installation of the VM Guest. This section
describes some known problems and their solutions.

During boot, the system hangs

The software I/O translation buer allocates a large chunk of low memory early in the
bootstrap process. If the requests for memory exceed the size of the buer it usually results
in a hung boot process. To check if this is the case, switch to console 10 and check the
output there for a message similar to

kernel: PCI-DMA: Out of SW-IOMMU space for 32768 bytes at device 000:01:02.0

169 VGA Pass-Through openSUSE Leap 15.0

In this case you need to increase the size of the swiotlb . Add swiotlb=VALUE (whereas
VALUE is specified as number of slab entries) on the cmdline of Dom0. Note that the
number can be adjusted up or down to nd the optimal size for the machine.

Note: swiotlb a PV guest
The swiotlb=force kernel parameter is required for DMA access to work for PCI devices
on a PV guest. For more information about IOMMU and the swiotlb option see the le
boot-options.txt from the package kernel-source .

17.5.5 For More Information

There are several resources on the Internet that provide interesting information about PCI Pass-
Through:

http://wiki.xensource.com/xenwiki/VTdHowTo

http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-

enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/

http://support.amd.com/TechDocs/48882_IOMMU.pdf

17.6 USB Pass-Through
There are two methods for passing through individual host USB devices to a guest. The rst is
via an emulated USB device controller, the second is using PVUSB.

17.6.1 Identify the USB Device

Before you can pass through a USB device to the VM Guest, you need to identify it on the VM
Host Server. Use the lsusb command to list the USB devices on the host system:

root # lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 003: ID 0461:4d15 Primax Electronics, Ltd Dell Optical Mouse
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

170 For More Information openSUSE Leap 15.0

http://wiki.xensource.com/xenwiki/VTdHowTo
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
http://support.amd.com/TechDocs/48882_IOMMU.pdf

To pass through the Dell mouse, for example, specify either the device tag in the form ven-
dor_id:device_id (0461:4d15) or the bus address in the form bus.device (2.3). Remember
to remove leading zeros, otherwise xl would interpret the numbers as octal values.

17.6.2 Emulated USB Device

In emulated USB, the device model (QEMU) presents an emulated USB controller to the guest.
The USB device is then controlled from Dom0 while USB commands are translated between the
VM Guest and the host USB device. This method is only available to fully virtualized domains
(HVM).

Enable the emulated USB hub with the usb=1 option. Then specify devices among the list of
devices in the config le along with other emulated devices by using host:USBID . For example:

usb=1
usbdevice=['tablet','host:2.3','host:0424:460']

17.6.3 Paravirtualized PVUSB

PVUSB is a new high performance method for USB Pass-Through from dom0 to the virtualized
guests. With PVUSB, there are two ways to add USB devices to a guest:

via the configuration le at domain creation time

via hotplug while the VM is running

PVUSB uses paravirtualized front- and back-end interfaces. PVUSB supports USB 1.1 and USB
2.0, and it works for both PV and HVM guests. To use PVUSB, you need usbfront in your guest
OS, and usbback in dom0 or usb back-end in qemu. On openSUSE Leap, the USB back-end comes
with qemu.

As of Xen 4.7, xl PVUSB support and hotplug support is introduced.

In the configuration le, specify USB controllers and USB host devices with usbctrl and us-
bdev . For example, in case of HVM guests:

usbctrl=['type=qusb,version=2,ports=4', 'type=qusb,version=1,ports=4',]
usbdev=['hostbus=2, hostaddr=1, controller=0,port=1',]

171 Emulated USB Device openSUSE Leap 15.0

Note
It is important to specify type=qusb for the controller of HVM guests.

To manage hotpluggin PVUSB devices, use the usbctrl-attach , usbctrl-detach , usb-list ,
usbdev-attach and usb-detach subcommands. For example:

Create a USB controller which is version USB 1.1 and has 8 ports:

root # xl usbctrl-attach test_vm version=1 ports=8 type=qusb

Find the rst available controller:port in the domain, and attach USB device whose busnum:de-
vnum is 2:3 to it; you can also specify controller and port :

root # xl usbdev-attach test_vm hostbus=2 hostaddr=3

Show all USB controllers and USB devices in the domain:

root # xl usb-list test_vm
Devid Type BE state usb-ver ports
0 qusb 0 1 1 8
 Port 1: Bus 002 Device 003
 Port 2:
 Port 3:
 Port 4:
 Port 5:
 Port 6:
 Port 7:
 Port 8:

Detach the USB device under controller 0 port 1:

root # xl usbdev-detach test_vm 0 1

Remove the USB controller with the indicated dev_id , and all USB devices under it:

root # xl usbctrl-detach test_vm dev_id

For more information, see https://wiki.xenproject.org/wiki/Xen_USB_Passthrough .

172 Paravirtualized PVUSB openSUSE Leap 15.0

https://wiki.xenproject.org/wiki/Xen_USB_Passthrough

18 Virtual Networking

A VM Guest system needs some means to communicate either with other VM Guest systems or
with a local network. The network interface to the VM Guest system is made of a split device
driver, which means that any virtual Ethernet device has a corresponding network interface in
Dom0. This interface is set up to access a virtual network that is run in Dom0. The bridged
virtual network is fully integrated into the system configuration of openSUSE Leap and can be
configured with YaST.

When installing a Xen VM Host Server, a bridged network configuration will be proposed during
normal network configuration. The user can choose to change the configuration during the
installation and customize it to the local needs.

If desired, Xen VM Host Server can be installed after performing a default Physical Server instal-
lation using the Install Hypervisor and Tools module in YaST. This module will prepare
the system for hosting virtual machines, including invocation of the default bridge networking
proposal.

In case the necessary packages for a Xen VM Host Server are installed manually with rpm or
zypper , the remaining system configuration needs to be done by the administrator manually
or with YaST.

The network scripts that are provided by Xen are not used by default in openSUSE Leap. They are
only delivered for reference but disabled. The network configuration that is used in openSUSE
Leap is done by means of the YaST system configuration similar to the configuration of network
interfaces in openSUSE Leap.

For more general information about managing network bridges, see Section 12.2, “Bridged Net-

working”.

18.1 Network Devices for Guest Systems

The Xen hypervisor can provide different types of network interfaces to the VM Guest systems.
The preferred network device should be a paravirtualized network interface. This yields the
highest transfer rates with the lowest system requirements. Up to eight network interfaces may
be provided for each VM Guest.

173 Network Devices for Guest Systems openSUSE Leap 15.0

Systems that are not aware of paravirtualized hardware may not have this option. To connect
systems to a network that can only run fully virtualized, several emulated network interfaces
are available. The following emulations are at your disposal:

Realtek 8139 (PCI). This is the default emulated network card.

AMD PCnet32 (PCI)

NE2000 (PCI)

NE2000 (ISA)

Intel e100 (PCI)

Intel e1000 and its variants e1000-82540em, e1000-82544gc, e1000-82545em (PCI)

All these network interfaces are software interfaces. Because every network interface must have
a unique MAC address, an address range has been assigned to Xensource that can be used by
these interfaces.

Tip: Virtual Network Interfaces and MAC Addresses
The default configuration of MAC addresses in virtualized environments creates a random
MAC address that looks like 00:16:3E:xx:xx:xx. Normally, the amount of available MAC
addresses should be big enough to get only unique addresses. However, if you have a
very big installation, or to make sure that no problems arise from random MAC address
assignment, you can also manually assign these addresses.

For debugging or system management purposes, it may be useful to know which virtual inter-
face in Dom0 is connected to which Ethernet device in a running guest. This information may
be read from the device naming in Dom0. All virtual devices follow the rule vif<domain num-
ber>.<interface_number> .

For example, if you want to know the device name for the third interface (eth2) of the VM Guest
with id 5, the device in Dom0 would be vif5.2 . To obtain a list of all available interfaces, run
the command ip a .

174 Network Devices for Guest Systems openSUSE Leap 15.0

The device naming does not contain any information about which bridge this interface is con-
nected to. However, this information is available in Dom0. To get an overview about which
interface is connected to which bridge, run the command bridge link . The output may look
as follows:

tux > sudo bridge link
2: eth0 state DOWN : <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 master br0
3: eth1 state UP : <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 master br1

In this example, there are three configured bridges: br0 , br1 and br2 . Currently, br0 and
br1 each have a real Ethernet device added: eth0 and eth1 , respectively.

18.2 Host-Based Routing in Xen

Xen can be set up to use host-based routing in the controlling Dom0. Unfortunately, this is not
yet well supported from YaST and requires quite an amount of manual editing of configuration
les. Thus, this is a task that requires an advanced administrator.

The following configuration will only work when using xed IP addresses. Using DHCP is not
practicable with this procedure, because the IP address must be known to both, the VM Guest
and the VM Host Server system.

The easiest way to create a routed guest is to change the networking from a bridged to a routed
network. As a requirement to the following procedures, a VM Guest with a bridged network setup
must be installed. For example, the VM Host Server is named earth with the IP 192.168.1.20,
and the VM Guest has the name alice with the IP 192.168.1.21.

PROCEDURE 18.1: CONFIGURING A ROUTED IPV4 VM GUEST

1. Make sure that alice is shut down. Use xl commands to shut down and check.

2. Prepare the network configuration on the VM Host Server earth:

a. Create a hotplug interface that will be used to route the traffic. To accomplish this,
create a le named /etc/sysconfig/network/ifcfg-alice.0 with the following
content:

NAME="Xen guest alice"
BOOTPROTO="static"
STARTMODE="hotplug"

175 Host-Based Routing in Xen openSUSE Leap 15.0

b. Edit the le /etc/sysconfig/SuSEfirewall2 and add the following configura-
tions:

Add alice.0 to the devices in FW_DEV_EXT:

FW_DEV_EXT="br0 alice.0"

Switch on the routing in the firewall:

FW_ROUTE="yes"

Tell the firewall which address should be forwarded:

FW_FORWARD="192.168.1.21/32,0/0"

Finally, restart the firewall with the command:

tux > sudo systemctl restart SuSEfirewall2

c. Add a static route to the interface of alice. To accomplish this, add the following line
to the end of /etc/sysconfig/network/routes :

192.168.1.21 - - alice.0

d. To make sure that the switches and routers that the VM Host Server is connected to
know about the routed interface, activate proxy_arp on earth. Add the following
lines to /etc/sysctl.conf :

net.ipv4.conf.default.proxy_arp = 1
net.ipv4.conf.all.proxy_arp = 1

e. Activate all changes with the commands:

tux > sudo systemctl restart systemd-sysctl wicked

3. Proceed with configuring the Xen configuration of the VM Guest by changing the vif in-
terface configuration for alice as described in Section 19.1, “XL—Xen Management Tool”. Make
the following changes to the text le you generate during the process:

a. Remove the snippet

bridge=br0

176 Host-Based Routing in Xen openSUSE Leap 15.0

b. And add the following one:

vifname=vifalice.0

or

vifname=vifalice.0=emu

for a fully virtualized domain.

c. Change the script that is used to set up the interface to the following:

script=/etc/xen/scripts/vif-route-ifup

d. Activate the new configuration and start the VM Guest.

4. The remaining configuration tasks must be accomplished from inside the VM Guest.

a. Open a console to the VM Guest with xl console DOMAIN and log in.

b. Check that the guest IP is set to 192.168.1.21.

c. Provide VM Guest with a host route and a default gateway to the VM Host Server.
Do this by adding the following lines to /etc/sysconfig/network/routes :

192.168.1.20 - - eth0
default 192.168.1.20 - -

5. Finally, test the network connection from the VM Guest to the world outside and from
the network to your VM Guest.

18.3 Creating a Masqueraded Network Setup
Creating a masqueraded network setup is quite similar to the routed setup. However, there is
no proxy_arp needed, and some firewall rules are different. To create a masqueraded network
to a guest dolly with the IP address 192.168.100.1 where the host has its external interface on
br0 , proceed as follows. For easier configuration, only the already installed guest is modified
to use a masqueraded network:

PROCEDURE 18.2: CONFIGURING A MASQUERADED IPV4 VM GUEST

1. Shut down the VM Guest system with xl shutdown DOMAIN .

177 Creating a Masqueraded Network Setup openSUSE Leap 15.0

2. Prepare the network configuration on the VM Host Server:

a. Create a hotplug interface that will be used to route the traffic. To accomplish this,
create a le named /etc/sysconfig/network/ifcfg-dolly.0 with the following
content:

NAME="Xen guest dolly"
BOOTPROTO="static"
STARTMODE="hotplug"

b. Edit the le /etc/sysconfig/SuSEfirewall2 and add the following configura-
tions:

Add dolly.0 to the devices in FW_DEV_DMZ:

FW_DEV_DMZ="dolly.0"

Switch on the routing in the firewall:

FW_ROUTE="yes"

Switch on masquerading in the firewall:

FW_MASQUERADE="yes"

Tell the firewall which network should be masqueraded:

FW_MASQ_NETS="192.168.100.1/32"

Remove the networks from the masquerading exceptions:

FW_NOMASQ_NETS=""

Finally, restart the firewall with the command:

tux > sudo systemctl restart SuSEfirewall2

c. Add a static route to the interface of dolly. To accomplish this, add the following
line to the end of /etc/sysconfig/network/routes :

192.168.100.1 - - dolly.0

178 Creating a Masqueraded Network Setup openSUSE Leap 15.0

d. Activate all changes with the command:

tux > sudo systemctl restart wicked

3. Proceed with configuring the Xen configuration of the VM Guest.

a. Change the vif interface configuration for dolly as described in Section 19.1, “XL—Xen

Management Tool”.

b. Remove the entry:

bridge=br0

c. And add the following one:

vifname=vifdolly.0

d. Change the script that is used to set up the interface to the following:

script=/etc/xen/scripts/vif-route-ifup

e. Activate the new configuration and start the VM Guest.

4. The remaining configuration tasks need to be accomplished from inside the VM Guest.

a. Open a console to the VM Guest with xl console DOMAIN and log in.

b. Check whether the guest IP is set to 192.168.100.1.

c. Provide VM Guest with a host route and a default gateway to the VM Host Server.
Do this by adding the following lines to /etc/sysconfig/network/routes :

192.168.1.20 - - eth0
default 192.168.1.20 - -

5. Finally, test the network connection from the VM Guest to the outside world.

179 Creating a Masqueraded Network Setup openSUSE Leap 15.0

18.4 Special Configurations
There are many network configuration possibilities available to Xen. The following configura-
tions are not activated by default:

18.4.1 Bandwidth Throttling in Virtual Networks

With Xen, you may limit the network transfer rate a virtual guest may use to access a bridge.
To configure this, you need to modify the VM Guest configuration as described in Section 19.1,

“XL—Xen Management Tool”.

In the configuration le, rst search for the device that is connected to the virtual bridge. The
configuration looks like the following:

vif = ['mac=00:16:3e:4f:94:a9,bridge=br0']

To add a maximum transfer rate, add a parameter rate to this configuration as in:

vif = ['mac=00:16:3e:4f:94:a9,bridge=br0,rate=100Mb/s']

Note that the rate is either Mb/s (megabits per second) or MB/s (megabytes per second). In the
above example, the maximum transfer rate of the virtual interface is 100 megabits. By default,
there is no limitation to the bandwidth of a guest to the virtual bridge.

It is even possible to ne-tune the behavior by specifying the time window that is used to define
the granularity of the credit replenishment:

vif = ['mac=00:16:3e:4f:94:a9,bridge=br0,rate=100Mb/s@20ms']

18.4.2 Monitoring the Network Traffic

To monitor the traffic on a specific interface, the little application iftop is a nice program that
displays the current network traffic in a terminal.

When running a Xen VM Host Server, you need to define the interface that is monitored. The
interface that Dom0 uses to get access to the physical network is the bridge device, for example
br0 . This, however, may vary on your system. To monitor all traffic to the physical interface,
run a terminal as root and use the command:

iftop -i br0

180 Special Configurations openSUSE Leap 15.0

To monitor the network traffic of a special network interface of a specific VM Guest, supply the
correct virtual interface. For example, to monitor the rst Ethernet device of the domain with
id 5, use the command:

ftop -i vif5.0

To quit iftop , press the key Q . More options and possibilities are available in the manual
page man 8 iftop .

181 Monitoring the Network Traffic openSUSE Leap 15.0

19 Managing a Virtualization Environment

Apart from using the recommended libvirt library (Part II, “Managing Virtual Machines with lib-

virt”), you can manage Xen guest domains with the xl tool from the command line.

19.1 XL—Xen Management Tool
The xl program is a tool for managing Xen guest domains. It is part of the xen-tools package.
xl is based on the LibXenlight library, and can be used for general domain management, such
as domain creation, listing, pausing, or shutting down. Usually you need to be root to execute
xl commands.

Note
xl can only manage running guest domains specified by their configuration le. If a
guest domain is not running, you cannot manage it with xl .

Tip
To allow users to continue to have managed guest domains in the way the obsolete xm
command allowed, we now recommend using libvirt 's virsh and virt-manager
tools. For more information, see Part II, “Managing Virtual Machines with libvirt”.

xl operations rely upon xenstored and xenconsoled services. Make sure you start

tux > systemctl start xencommons

at boot time to initialize all the daemons required by xl .

Tip: Set up a xenbr0 Network Bridge in the Host
Domain
In the most common network configuration, you need to set up a bridge in the host
domain named xenbr0 to have a working network for the guest domains.

The basic structure of every xl command is:

xl <subcommand> [options] domain_id

182 XL—Xen Management Tool openSUSE Leap 15.0

where <subcommand> is the xl command to run, domain_id is the ID number assigned to
a domain or the name of the virtual machine, and OPTIONS indicates subcommand-specific
options.

For a complete list of the available xl subcommands, run xl help . For each command, there
is a more detailed help available that is obtained with the extra parameter --help . More infor-
mation about the respective subcommands is available in the manual page of xl .

For example, the xl list --help displays all options that are available to the list command.
As an example, the xl list command displays the status of all virtual machines.

tux > sudo xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 457 2 r----- 2712.9
sles12 7 512 1 -b---- 16.3
opensuse 512 1 12.9

The State information indicates if a machine is running, and in which state it is. The most
common ags are r (running) and b (blocked) where blocked means it is either waiting for IO,
or sleeping because there is nothing to do. For more details about the state ags, see man 1 xl .

Other useful xl commands include:

xl create creates a virtual machine from a given configuration le.

xl reboot reboots a virtual machine.

xl destroy immediately terminates a virtual machine.

xl block-list displays all virtual block devices attached to a virtual machine.

19.1.1 Guest Domain Configuration File

When operating domains, xl requires a domain configuration le for each domain. The default
directory to store such configuration les is /etc/xen/ .

A domain configuration le is a plain text le. It consists of several KEY= VALUE pairs. Some
keys are mandatory, some are general and apply to any guest, and some apply only to a specific
guest type (para or fully virtualized). A value can either be a "string" surrounded by single
or double quotes, a number, a boolean value, or a list of several values enclosed in brackets
[value1, value2, ...] .

EXAMPLE 19.1: GUEST DOMAIN CONFIGURATION FILE FOR SLED 12: /etc/xen/sled12.cfg

name= "sled12"

183 Guest Domain Configuration File openSUSE Leap 15.0

builder = "hvm"
vncviewer = 1
memory = 512
disk = ['/var/lib/xen/images/sled12.raw,,hda', '/dev/cdrom,,hdc,cdrom']
vif = ['mac=00:16:3e:5f:48:e4,model=rtl8139,bridge=br0']
boot = "n"

To start such domain, run xl create /etc/xen/sled12.cfg .

19.2 Automatic Start of Guest Domains
To make a guest domain start automatically after the host system boots, follow these steps:

1. Create the domain configuration le if it does not exist, and save it in the /etc/xen/
directory, for example /etc/xen/domain_name.cfg .

2. Make a symbolic link of the guest domain configuration le in the auto/ subdirectory.

tux > sudo ln -s /etc/xen/domain_name.cfg /etc/xen/auto/domain_name.cfg

3. On the next system boot, the guest domain defined in domain_name.cfg will be started.

19.3 Event Actions
In the guest domain configuration le, you can define actions to be performed on a predefined
set of events. For example, to tell the domain to restart itself after it is powered o, include the
following line in its configuration le:

on_poweroff="restart"

A list of predefined events for a guest domain follows:

LIST OF EVENTS

on_poweroff

Specifies what should be done with the domain if it shuts itself down.

on_reboot

Action to take if the domain shuts down with a reason code requesting a reboot.

on_watchdog

184 Automatic Start of Guest Domains openSUSE Leap 15.0

Action to take if the domain shuts down because of a Xen watchdog timeout.

on_crash

Action to take if the domain crashes.

For these events, you can define one of the following actions:

LIST OF RELATED ACTIONS

destroy

Destroy the domain.

restart

Destroy the domain and immediately create a new domain with the same configuration.

rename-restart

Rename the domain that terminated, and then immediately create a new domain with the
same configuration as the original.

preserve

Keep the domain. It can be examined, and later destroyed with xl destroy .

coredump-destroy

Write a core dump of the domain to /var/xen/dump/NAME and then destroy the domain.

coredump-restart

Write a core dump of the domain to /var/xen/dump/NAME and then restart the domain.

19.4 Time Stamp Counter
The Time Stamp Counter (TSC) may be specified for each domain in the guest domain configu-
ration le (for more information, see Section 19.1.1, “Guest Domain Configuration File”).

With the tsc_mode setting, you specify whether rdtsc instructions are executed “natively” (fast,
but TSC-sensitive applications may sometimes run incorrectly) or emulated (always run correct-
ly, but performance may suffer).

tsc_mode=0 (default)

Use this to ensure correctness while providing the best performance possible—for more
information, see https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt .

tsc_mode=1 (always emulate)

185 Time Stamp Counter openSUSE Leap 15.0

https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt

Use this when TSC-sensitive apps are running and worst-case performance degradation is
known and acceptable.

tsc_mode=2 (never emulate)

Use this when all applications running in this VM are TSC-resilient and highest perfor-
mance is required.

tsc_mode=3 (PVRDTSCP)

High-TSC-frequency applications may be paravirtualized (modified) to obtain both cor-
rectness and highest performance—any unmodified applications must be TSC-resilient.

For background information, see https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt .

19.5 Saving Virtual Machines
PROCEDURE 19.1: SAVE A VIRTUAL MACHINE’S CURRENT STATE

1. Make sure the virtual machine to be saved is running.

2. In the host environment, enter

tux > sudo xl save ID STATE-FILE

where ID is the virtual machine ID you want to save, and STATE-FILE is the name you
specify for the memory state le. By default, the domain will no longer be running after
you create its snapshot. Use -c to keep it running even after you create the snapshot.

19.6 Restoring Virtual Machines
PROCEDURE 19.2: RESTORE A VIRTUAL MACHINE’S CURRENT STATE

1. Make sure the virtual machine to be restored has not been started since you ran the save
operation.

2. In the host environment, enter

tux > sudo xl restore STATE-FILE

where STATE-FILE is the previously saved memory state le. By default, the domain will
be running after it is restored. To pause it after the restore, use -p .

186 Saving Virtual Machines openSUSE Leap 15.0

https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt

19.7 Virtual Machine States
A virtual machine’s state can be displayed by viewing the results of the xl list command,
which abbreviates the state using a single character.

r - running - The virtual machine is currently running and consuming allocated resources.

b - blocked - The virtual machine’s processor is not running and not able to run. It is either
waiting for I/O or has stopped working.

p - paused - The virtual machine is paused. It does not interact with the hypervisor but
still maintains its allocated resources, such as memory.

s - shutdown - The guest operating system is in the process of being shut down, rebooted,
or suspended, and the virtual machine is being stopped.

c - crashed - The virtual machine has crashed and is not running.

d - dying - The virtual machine is in the process of shutting down or crashing.

187 Virtual Machine States openSUSE Leap 15.0

20 Block Devices in Xen

20.1 Mapping Physical Storage to Virtual Disks
The disk(s) specification for a Xen domain in the domain configuration le is as straightforward
as the following example:

disk = ['format=raw,vdev=hdc,access=ro,devtype=cdrom,target=/root/image.iso']

It defines a disk block device based on the /root/image.iso disk image le. The disk will be
seen as hdc by the guest, with read-only (ro) access. The type of the device is cdrom with
raw format.

The following example defines an identical device, but using simplified positional syntax:

disk = ['/root/image.iso,raw,hdc,ro,cdrom']

You can include more disk definitions in the same line, each one separated by a comma. If a
parameter is not specified, then its default value is taken:

disk = ['/root/image.iso,raw,hdc,ro,cdrom','/dev/vg/guest-volume,,hda','...']

LIST OF PARAMETERS

target

Source block device or disk image le path.

format

The format of the image le. Default is raw .

vdev

Virtual device as seen by the guest. Supported values are hd[x], xvd[x], sd[x] etc. See
/usr/share/doc/packages/xen/misc/vbd-interface.txt for more details. This para-
meter is mandatory.

access

Whether the block device is provided to the guest in read-only or read-write mode. Sup-
ported values are ro or r for read-only, and rw or w for read/write access. Default is
ro for devtype=cdrom , and rw for other device types.

devtype

188 Mapping Physical Storage to Virtual Disks openSUSE Leap 15.0

Qualifies virtual device type. Supported value is cdrom .

backendtype

The back-end implementation to use. Supported values are phy , tap , and qdisk . Nor-
mally this option should not be specified as the back-end type is automatically determined.

script

Specifies that target is not a normal host path, but rather information to be interpreted
by the executable program. The specified script le is looked for in /etc/xen/scripts
if it does not point to an absolute path. These scripts are normally called block-<scrip-
t_name> .

For more information about specifying virtual disks, see /usr/share/doc/packages/xen/
misc/xl-disk-configuration.txt .

20.2 Mapping Network Storage to Virtual Disk
Similar to mapping a local disk image (see Section 20.1, “Mapping Physical Storage to Virtual Disks”),
you can map a network disk as a virtual disk as well.

The following example shows mapping of an RBD (RADOS Block Device) disk with multiple
Ceph monitors and cephx authentication enabled:

disk = ['vdev=hdc, backendtype=qdisk, \
target=rbd:libvirt-pool/new-libvirt-image:\
id=libvirt:key=AQDsPWtW8JoXJBAAyLPQe7MhCC+JPkI3QuhaAw==:auth_supported=cephx;none:\
mon_host=137.65.135.205\\:6789;137.65.135.206\\:6789;137.65.135.207\\:6789']

Following is an example of an NBD (Network Block Device) disk mapping:

disk = ['vdev=hdc, backendtype=qdisk, target=nbd:151.155.144.82:5555']

20.3 File-Backed Virtual Disks and Loopback Devices
When a virtual machine is running, each of its le-backed virtual disks consumes a loopback
device on the host. By default, the host allows up to 64 loopback devices to be consumed.

To simultaneously run more le-backed virtual disks on a host, you can increase the number of
available loopback devices by adding the following option to the host’s /etc/modprobe.con-
f.local le.

189 Mapping Network Storage to Virtual Disk openSUSE Leap 15.0

options loop max_loop=x

where x is the maximum number of loopback devices to create.

Changes take effect after the module is reloaded.

Tip
Enter rmmod loop and modprobe loop to unload and reload the module. In case rmmod
does not work, unmount all existing loop devices or reboot the computer.

20.4 Resizing Block Devices

While it is always possible to add new block devices to a VM Guest system, it is sometimes more
desirable to increase the size of an existing block device. In case such a system modification is
already planned during deployment of the VM Guest, some basic considerations should be done:

Use a block device that may be increased in size. LVM devices and le system images are
commonly used.

Do not partition the device inside the VM Guest, but use the main device directly to apply
the le system. For example, use /dev/xvdb directly instead of adding partitions to /
dev/xvdb .

Make sure that the le system to be used can be resized. Sometimes, for example with
Ext3, some features must be switched o to be able to resize the le system. A le system
that can be resized online and mounted is XFS . Use the command xfs_growfs to resize
that le system after the underlying block device has been increased in size. For more
information about XFS , see man 8 xfs_growfs .

When resizing an LVM device that is assigned to a VM Guest, the new size is automatically
known to the VM Guest. No further action is needed to inform the VM Guest about the new
size of the block device.

When using le system images, a loop device is used to attach the image le to the guest. For
more information about resizing that image and refreshing the size information for the VM
Guest, see Section 22.2, “Sparse Image Files and Disk Space”.

190 Resizing Block Devices openSUSE Leap 15.0

20.5 Scripts for Managing Advanced Storage
Scenarios
There are scripts that can help with managing advanced storage scenarios such as disk environ-
ments provided by dmmd (“device mapper—multi disk”) including LVM environments built up-
on a software RAID set, or a software RAID set built upon an LVM environment. These scripts are
part of the xen-tools package. After installation, they can be found in /etc/xen/scripts :

block-dmmd

block-drbd-probe

block-npiv

The scripts allow for external commands to perform some action, or series of actions of the block
devices prior to serving them up to a guest.

These scripts could formerly only be used with xl or libxl using the disk configuration syntax
script= . They can now be used with libvirt by specifying the base name of the block script in
the <source> element of the disk. For example:

<source dev='dmmd:md;/dev/md0;lvm;/dev/vgxen/lv-vm01'/>

191 Scripts for Managing Advanced Storage Scenarios openSUSE Leap 15.0

21 Virtualization: Configuration Options and Settings

The documentation in this section, describes advanced management tasks and configuration
options that might help technology innovators implement leading-edge virtualization solutions.
It is provided as a courtesy and does not imply that all documented options and tasks are sup-
ported by Novell, Inc.

21.1 Virtual CD Readers
Virtual CD readers can be set up when a virtual machine is created or added to an existing virtual
machine. A virtual CD reader can be based on a physical CD/DVD, or based on an ISO image.
Virtual CD readers work differently depending on whether they are paravirtual or fully virtual.

21.1.1 Virtual CD Readers on Paravirtual Machines

A paravirtual machine can have up to 100 block devices composed of virtual CD readers and
virtual disks. On paravirtual machines, virtual CD readers present the CD as a virtual disk with
read-only access. Virtual CD readers cannot be used to write data to a CD.

After you have finished accessing a CD on a paravirtual machine, it is recommended that you
remove the virtual CD reader from the virtual machine.

Paravirtualized guests can use the device type devtype=cdrom . This partly emulates the be-
havior of a real CD reader, and allows CDs to be changed. It is even possible to use the eject
command to open the tray of the CD reader.

21.1.2 Virtual CD Readers on Fully Virtual Machines

A fully virtual machine can have up to four block devices composed of virtual CD readers and
virtual disks. A virtual CD reader on a fully virtual machine interacts with an inserted CD in the
way you would expect a physical CD reader to interact.

When a CD is inserted in the physical CD reader on the host computer, all virtual machines with
virtual CD readers based on the physical CD reader, such as /dev/cdrom/ , can read the inserted
CD. Assuming the operating system has automount functionality, the CD should automatically
appear in the le system. Virtual CD readers cannot be used to write data to a CD. They are
configured as read-only devices.

192 Virtual CD Readers openSUSE Leap 15.0

21.1.3 Adding Virtual CD Readers

Virtual CD readers can be based on a CD inserted into the CD reader or on an ISO image le.

1. Make sure that the virtual machine is running and the operating system has finished boot-
ing.

2. Insert the desired CD into the physical CD reader or copy the desired ISO image to a
location available to Dom0.

3. Select a new, unused block device in your VM Guest, such as /dev/xvdb .

4. Choose the CD reader or ISO image that you want to assign to the guest.

5. When using a real CD reader, use the following command to assign the CD reader to your
VM Guest. In this example, the name of the guest is alice:

tux > sudo xl block-attach alice target=/dev/sr0,vdev=xvdb,access=ro

6. When assigning an image le, use the following command:

tux > sudo xl block-attach alice target=/path/to/file.iso,vdev=xvdb,access=ro

7. A new block device, such as /dev/xvdb , is added to the virtual machine.

8. If the virtual machine is running Linux, complete the following:

a. Open a terminal in the virtual machine and enter fdisk -l to verify that the device
was properly added. You can also enter ls /sys/block to see all disks available
to the virtual machine.
The CD is recognized by the virtual machine as a virtual disk with a drive designation,
for example:

/dev/xvdb

b. Enter the command to mount the CD or ISO image using its drive designation. For
example,

tux > sudo mount -o ro /dev/xvdb /mnt

mounts the CD to a mount point named /mnt .
The CD or ISO image le should be available to the virtual machine at the specified
mount point.

193 Adding Virtual CD Readers openSUSE Leap 15.0

9. If the virtual machine is running Windows, reboot the virtual machine.
Verify that the virtual CD reader appears in its My Computer section.

21.1.4 Removing Virtual CD Readers

1. Make sure that the virtual machine is running and the operating system has finished boot-
ing.

2. If the virtual CD reader is mounted, unmount it from within the virtual machine.

3. Enter xl block-list alice on the host view of the guest block devices.

4. Enter xl block-detach alice BLOCK_DEV_ID to remove the virtual device from the
guest. If that fails, try to add -f to force the removal.

5. Press the hardware eject button to eject the CD.

21.2 Remote Access Methods
Some configurations, such as those that include rack-mounted servers, require a computer to
run without a video monitor, keyboard, or mouse. This type of configuration is often called
headless and requires the use of remote administration technologies.

Typical configuration scenarios and technologies include:

Graphical Desktop with X Window Server

If a graphical desktop, such as GNOME, is installed on the virtual machine host, you can
use a remote viewer, such as a VNC viewer. On a remote computer, log in and manage the
remote guest environment by using graphical tools, such as tigervnc or virt-viewer .

Text Only

You can use the ssh command from a remote computer to log in to a virtual machine host
and access its text-based console. You can then use the xl command to manage virtual
machines, and the virt-install command to create new virtual machines.

21.3 VNC Viewer
VNC viewer is used to view the environment of the running guest system in a graphical way.
You can use it from Dom0 (known as local access or on-box access), or from a remote computer.

194 Removing Virtual CD Readers openSUSE Leap 15.0

You can use the IP address of a VM Host Server and a VNC viewer to view the display of this
VM Guest. When a virtual machine is running, the VNC server on the host assigns the virtual
machine a port number to be used for VNC viewer connections. The assigned port number is the
lowest port number available when the virtual machine starts. The number is only available for
the virtual machine while it is running. After shutting down, the port number might be assigned
to other virtual machines.

For example, if ports 1 and 2 and 4 and 5 are assigned to the running virtual machines, the VNC
viewer assigns the lowest available port number, 3. If port number 3 is still in use the next time
the virtual machine starts, the VNC server assigns a different port number to the virtual machine.

To use the VNC viewer from a remote computer, the firewall must permit access to as many
ports as VM Guest systems run from. This means from port 5900 and up. For example, to run
10 VM Guest systems, you need to open the TCP ports 5900:5910.

To access the virtual machine from the local console running a VNC viewer client, enter one
of the following commands:

vncviewer ::590#

vncviewer :#

is the VNC viewer port number assigned to the virtual machine.

When accessing the VM Guest from a machine other than Dom0, use the following syntax:

tux > vncviewer 192.168.1.20::590#

In this case, the IP address of Dom0 is 192.168.1.20.

21.3.1 Assigning VNC Viewer Port Numbers to Virtual Machines

Although the default behavior of VNC viewer is to assign the rst available port number, you
should assign a specific VNC viewer port number to a specific virtual machine.

To assign a specific port number on a VM Guest, edit the xl setting of the virtual machine and
change the vnclisten to the desired value. Note that for example for port number 5902, specify
2 only, as 5900 is added automatically:

vfb = ['vnc=1,vnclisten="localhost:2"']

For more information regarding editing the xl settings of a guest domain, see Section 19.1, “XL

—Xen Management Tool”.

195 Assigning VNC Viewer Port Numbers to Virtual Machines openSUSE Leap 15.0

Tip
Assign higher port numbers to avoid conflict with port numbers assigned by the VNC
viewer, which uses the lowest available port number.

21.3.2 Using SDL instead of a VNC Viewer

If you access a virtual machine's display from the virtual machine host console (known as local
or on-box access), you should use SDL instead of VNC viewer. VNC viewer is faster for viewing
desktops over a network, but SDL is faster for viewing desktops from the same computer.

To set the default to use SDL instead of VNC, change the virtual machine's configuration infor-
mation to the following. For instructions, see Section 19.1, “XL—Xen Management Tool”.

vfb = ['sdl=1']

Remember that, unlike a VNC viewer window, closing an SDL window terminates the virtual
machine.

21.4 Virtual Keyboards

When a virtual machine is started, the host creates a virtual keyboard that matches the keymap
entry according to the virtual machine's settings. If there is no keymap entry specified, the
virtual machine's keyboard defaults to English (US).

To view a virtual machine's current keymap entry, enter the following command on the Dom0:

tux > xl list -l VM_NAME | grep keymap

To configure a virtual keyboard for a guest, use the following snippet:

vfb = ['keymap="de"']

For a complete list of supported keyboard layouts, see the Keymaps section of the xl.cfg
manual page man 5 xl.cfg .

196 Using SDL instead of a VNC Viewer openSUSE Leap 15.0

21.5 Dedicating CPU Resources
In Xen it is possible to specify how many and which CPU cores the Dom0 or VM Guest should
use to retain its performance. The performance of Dom0 is important for the overall system,
as the disk and network drivers are running on it. Also I/O intensive guests' workloads may
consume lots of Dom0s' CPU cycles. On the other hand, the performance of VM Guests is also
important, to be able to accomplish the task they were set up for.

21.5.1 Dom0

Dedicating CPU resources to Dom0 results in a better overall performance of the virtualized
environment because Dom0 has free CPU time to process I/O requests from VM Guests. Failing
to dedicate exclusive CPU resources to Dom0 usually results in a poor performance and can
cause the VM Guests to function incorrectly.

Dedicating CPU resources involves three basic steps: modifying Xen boot line, binding Dom0's
VCPUs to a physical processor, and configuring CPU-related options on VM Guests:

1. First you need to append the dom0_max_vcpus=X to the Xen boot line. Do so by adding
the following line to /etc/default/grub :

GRUB_CMDLINE_XEN="dom0_max_vcpus=X"

If /etc/default/grub already contains a line setting GRUB_CMDLINE_XEN , rather append
dom0_max_vcpus=X to this line.
X needs to be replaced by the number of VCPUs dedicated to Dom0.

2. Update the GRUB 2 configuration le by running the following command:

tux > sudo grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot for the change to take effect.

4. The next step is to bind (or “pin”) each Dom0's VCPU to a physical processor.

tux > sudo xl vcpu-pin Domain-0 0 0
xl vcpu-pin Domain-0 1 1

The rst line binds Dom0's VCPU number 0 to the physical processor number 0, while the
second line binds Dom0's VCPU number 1 to the physical processor number 1.

197 Dedicating CPU Resources openSUSE Leap 15.0

5. Lastly, you need to make sure no VM Guest uses the physical processors dedicated to
VCPUs of Dom0. Assuming you are running an 8-CPU system, you need to add

cpus="2-8"

to the configuration le of the relevant VM Guest.

21.5.2 VM Guests

It is often necessary to dedicate specific CPU resources to a virtual machine. By default, a virtual
machine uses any available CPU core. Its performance can be improved by assigning a reasonable
number of physical processors to it as other VM Guests are not allowed to use them after that.
Assuming a machine with 8 CPU cores while a virtual machine needs to use 2 of them, change
its configuration le as follows:

vcpus=2
cpus="2,3"

The above example dedicates 2 processors to the VM Guest, and these being the 3rd and 4th
one, (2 and 3 counted from zero). If you need to assign more physical processors, use the
cpus="2-8" syntax.

If you need to change the CPU assignment for a guest named “alice” in a hotplug manner, do
the following on the related Dom0:

tux > sudo xl vcpu-set alice 2
tux > sudo xl vcpu-pin alice 0 2
tux > sudo xl vcpu-pin alice 1 3

The example will dedicate 2 physical processors to the guest, and bind its VCPU 0 to physical
processor 2 and VCPU 1 to physical processor 3. Now check the assignment:

tux > sudo xl vcpu-list alice
Name ID VCPUs CPU State Time(s) CPU Affinity
alice 4 0 2 -b- 1.9 2-3
alice 4 1 3 -b- 2.8 2-3

21.6 HVM Features
In Xen some features are only available for fully virtualized domains. They are not very often
used, but still may be interesting in some environments.

198 VM Guests openSUSE Leap 15.0

21.6.1 Specify Boot Device on Boot

Just as with physical hardware, it is sometimes desirable to boot a VM Guest from a different
device than its own boot device. For fully virtual machines, it is possible to select a boot device
with the boot parameter in a domain xl configuration le:

boot = BOOT_DEVICE

BOOT_DEVICE can be one of c for hard disk, d for CD-ROM, or n for Network/PXE. You can
specify multiple options, and they will be attempted in the given order. For example,

boot = dc

boots from CD-ROM, and falls back to the hard disk if CD-ROM is not bootable.

21.6.2 Changing CPUIDs for Guests

To be able to migrate a VM Guest from one VM Host Server to a different VM Host Server,
the VM Guest system may only use CPU features that are available on both VM Host Server
systems. If the actual CPUs are different on both hosts, it may be necessary to hide some features
before the VM Guest is started. This maintains the possibility to migrate the VM Guest between
both hosts. For fully virtualized guests, this can be achieved by configuring the cpuid that is
available to the guest.

To gain an overview of the current CPU, have a look at /proc/cpuinfo . This contains all the
important information that defines the current CPU.

To redefine a CPU, rst have a look at the respective cpuid definitions of the CPU vendor. These
are available from:

Intel

http://www.intel.com/Assets/PDF/appnote/241618.pdf

cpuid = "host,tm=0,sse3=0"

The syntax is a comma-separated list of key=value pairs, preceded by the word "host". A few
keys take a numerical value, while all others take a single character which describes what to do
with the feature bit. See man 5 xl.cfg for a complete list of cpuid keys. The respective bits
may be changed by using the following values:

1

199 Specify Boot Device on Boot openSUSE Leap 15.0

http://www.intel.com/Assets/PDF/appnote/241618.pdf

Force the corresponding bit to 1

0

Force the corresponding bit to 0

x

Use the values of the default policy

k

Use the values defined by the host

s

Like k , but preserve the value over migrations

Note that counting bits is done from right to left, starting with bit 0 .

21.6.3 Increasing the Number of PCI-IRQs

In case you need to increase the default number of PCI-IRQs available to Dom0 and/or VM
Guest, you can do so by modifying the Xen kernel command line. Use the command ex-
tra_guest_irqs= DOMU_IRGS,DOM0_IRGS . The optional rst number DOMU_IRGS is common
for all VM Guests, while the optional second number DOM0_IRGS (preceded by a comma) is for
Dom0. Changing the setting for VM Guest has no impact on Dom0 and vice versa. For example
to change Dom0 without changing VM Guest, use

extra_guest_irqs=,512

200 Increasing the Number of PCI-IRQs openSUSE Leap 15.0

22 Administrative Tasks

22.1 The Boot Loader Program
The boot loader controls how the virtualization software boots and runs. You can modify the
boot loader properties by using YaST, or by directly editing the boot loader configuration le.

The YaST boot loader program is located at YaST System Boot Loader. Click the Bootloader
Options tab and select the line containing the Xen kernel as the Default Boot Section.

FIGURE 22.1: BOOT LOADER SETTINGS

Confirm with OK. Next time you boot the host, it will be ready to provide the Xen virtualization
environment.

You can use the Boot Loader program to specify functionality, such as:

Pass kernel command line parameters.

Specify the kernel image and initial RAM disk.

Select a specific hypervisor.

Pass additional parameters to the hypervisor. See http://xenbits.xen.org/docs/unsta-

ble/misc/xen-command-line.html for their complete list.

201 The Boot Loader Program openSUSE Leap 15.0

http://xenbits.xen.org/docs/unstable/misc/xen-command-line.html
http://xenbits.xen.org/docs/unstable/misc/xen-command-line.html

You can customize your virtualization environment by editing the /etc/default/grub le.
Add the following line to this le: GRUB_CMDLINE_XEN="<boot_parameters>" . Do not forget
to run grub2-mkconfig -o /boot/grub2/grub.cfg after editing the le.

22.2 Sparse Image Files and Disk Space

If the host’s physical disk reaches a state where it has no available space, a virtual machine
using a virtual disk based on a sparse image le cannot write to its disk. Consequently, it reports
I/O errors.

If this situation occurs, you should free up available space on the physical disk, remount the
virtual machine’s le system, and set the le system back to read-write.

To check the actual disk requirements of a sparse image le, use the command du -h <image
file> .

To increase the available space of a sparse image le, rst increase the le size and then the
le system.

Warning: Back Up Before Resizing
Touching the sizes of partitions or sparse les always bears the risk of data failure. Do
not work without a backup.

The resizing of the image le can be done online, while the VM Guest is running. Increase the
size of a sparse image le with:

tux > sudo dd if=/dev/zero of=<image file> count=0 bs=1M seek=<new size in MB>

For example, to increase the le /var/lib/xen/images/sles/disk0 to a size of 16GB, use
the command:

tux > sudo dd if=/dev/zero of=/var/lib/xen/images/sles/disk0 count=0 bs=1M seek=16000

202 Sparse Image Files and Disk Space openSUSE Leap 15.0

Note: Increasing Non-Sparse Images
It is also possible to increase the image les of devices that are not sparse les. However,
you must know exactly where the previous image ends. Use the seek parameter to point
to the end of the image le and use a command similar to the following:

tux > sudo dd if=/dev/zero of=/var/lib/xen/images/sles/disk0 seek=8000 bs=1M
 count=2000

Be sure to use the right seek, else data loss may happen.

If the VM Guest is running during the resize operation, also resize the loop device that provides
the image le to the VM Guest. First detect the correct loop device with the command:

tux > sudo losetup -j /var/lib/xen/images/sles/disk0

Then resize the loop device, for example /dev/loop0 , with the following command:

tux > sudo losetup -c /dev/loop0

Finally check the size of the block device inside the guest system with the command fdisk -
l /dev/xvdb . The device name depends on the actually increased device.

The resizing of the le system inside the sparse le involves tools that are depending on the
actual le system.

22.3 Migrating Xen VM Guest Systems

With Xen it is possible to migrate a VM Guest system from one VM Host Server to another with
almost no service interruption. This could be used for example to move a busy VM Guest to a VM
Host Server that has stronger hardware or is not yet loaded. Or, if a service of a VM Host Server
is required, all VM Guest systems running on this machine can be migrated to other machines
to avoid interruption of service. These are only two examples—many more reasons may apply
to your personal situation.

203 Migrating Xen VM Guest Systems openSUSE Leap 15.0

Before starting, some preliminary considerations regarding the VM Host Server should be taken
into account:

All VM Host Server systems should use a similar CPU. The frequency is not so important,
but they should be using the same CPU family. To get more information about the used
CPU, see cat /proc/cpuinfo .

All resources that are used by a specific guest system must be available on all involved
VM Host Server systems—for example all used block devices must exist on both VM Host
Server systems.

If the hosts included in the migration process run in different subnets, make sure that either
DHCP relay is available to the guests, or for guests with static network configuration, set
up the network manually.

Using special features like PCI Pass-Through may be problematic. Do not implement
these when deploying for an environment that should migrate VM Guest systems between
different VM Host Server systems.

For fast migrations, a fast network is mandatory. If possible, use GB Ethernet and fast
switches. Deploying VLAN might also help avoid collisions.

22.3.1 Preparing Block Devices for Migrations

The block devices needed by the VM Guest system must be available on all involved VM Host
Server systems. This is done by implementing some kind of shared storage that serves as con-
tainer for the root le system of the migrated VM Guest system. Common possibilities include:

iSCSI can be set up to give access to the same block devices from different systems at
the same time.

NFS is a widely used root le system that can easily be accessed from different locations.
For more information, see Book “Reference”, Chapter 22 “Sharing File Systems with NFS”.

DRBD can be used if only two VM Host Server systems are involved. This gives some extra
data security, because the used data is mirrored over the network. .

204 Preparing Block Devices for Migrations openSUSE Leap 15.0

SCSI can also be used if the available hardware permits shared access to the same disks.

NPIV is a special mode to use Fibre channel disks. However, in this case all migration hosts
must be attached to the same Fibre channel switch. For more information about NPIV,
see Section 20.1, “Mapping Physical Storage to Virtual Disks”. Commonly, this works if the Fibre
channel environment supports 4 Gbit or faster connections.

22.3.2 Migrating VM Guest Systems

The actual migration of the VM Guest system is done with the command:

tux > sudo xl migrate <domain_name> <host>

The speed of the migration depends on how fast the memory print can be saved to disk, sent
to the new VM Host Server and loaded there. This means that small VM Guest systems can be
migrated faster than big systems with a lot of memory.

22.4 Monitoring Xen
For a regular operation of many virtual guests, having a possibility to check the sanity of all the
different VM Guest systems is indispensable. Xen offers several tools besides the system tools
to gather information about the system.

Tip: Monitoring the VM Host Server
Basic monitoring of the VM Host Server (I/O and CPU) is available via the Virtual Machine
Manager. Refer to Section 9.8.1, “Monitoring with Virtual Machine Manager” for details.

22.4.1 Monitor Xen with xentop
The preferred terminal application to gather information about Xen virtual environment is xen-
top . Unfortunately, this tool needs a rather broad terminal, else it inserts line breaks into the
display.

xentop has several command keys that can give you more information about the system that
is monitored. Some of the more important are:

D

205 Migrating VM Guest Systems openSUSE Leap 15.0

Change the delay between the refreshes of the screen.

N

Also display network statistics. Note, that only standard configurations will be displayed.
If you use a special configuration like a routed network, no network will be displayed.

B

Display the respective block devices and their cumulated usage count.

For more information about xentop see the manual page man 1 xentop .

Tip: virt-top
libvirt offers the hypervisor-agnostic tool virt-top , which is recommended for moni-
toring VM Guests. See Section 9.8.2, “Monitoring with virt-top” for details.

22.4.2 Additional Tools

There are many system tools that also help monitoring or debugging a running openSUSE system.
Many of these are covered in Book “System Analysis and Tuning Guide”, Chapter 2 “System Monitoring

Utilities”. Especially useful for monitoring a virtualization environment are the following tools:

ip

The command line utility ip may be used to monitor arbitrary network interfaces. This
is especially useful if you have set up a network that is routed or applied a masquerad-
ed network. To monitor a network interface with the name alice.0 , run the following
command:

tux > watch ip -s link show alice.0

bridge

In a standard setup, all the Xen VM Guest systems are attached to a virtual network bridge.
bridge allows you to determine the connection between the bridge and the virtual net-
work adapter in the VM Guest system. For example, the output of bridge link may look
like the following:

2: eth0 state DOWN : <NO-CARRIER, ...,UP> mtu 1500 master br0
8: vnet0 state UNKNOWN : <BROADCAST, ...,LOWER_UP> mtu 1500 master virbr0 \
 state forwarding priority 32 cost 100

206 Additional Tools openSUSE Leap 15.0

This shows that there are two virtual bridges defined on the system. One is connected to
the physical Ethernet device eth0 , the other one is connected to a VLAN interface vnet0 .

iptables-save

Especially when using masquerade networks, or if several Ethernet interfaces are set up
together with a firewall setup, it may be helpful to check the current firewall rules.
The command iptables may be used to check all the different firewall settings. To list
all the rules of a chain, or even of the complete setup, you may use the commands ipt-
ables-save or iptables -S .

22.5 Providing Host Information for VM Guest
Systems
In a standard Xen environment, the VM Guest systems have only very limited information about
the VM Host Server system they are running on. If a guest should know more about the VM Host
Server it runs on, vhostmd can provide more information to selected guests. To set up your
system to run vhostmd , proceed as follows:

1. Install the package vhostmd on the VM Host Server.

2. To add or remove metric sections from the configuration, edit the le /etc/vhost-
md/vhostmd.conf . However, the default works well.

3. Check the validity of the vhostmd.conf configuration le with the command:

tux > cd /etc/vhostmd
tux > xmllint --postvalid --noout vhostmd.conf

4. Start the vhostmd daemon with the command sudo systemctl start vhostmd .
If vhostmd should be started automatically during start-up of the system, run the com-
mand:

tux > sudo systemctl enable vhostmd

5. Attach the image le /dev/shm/vhostmd0 to the VM Guest system named alice with the
command:

tux > xl block-attach opensuse /dev/shm/vhostmd0,,xvdb,ro

6. Log on the VM Guest system.

207 Providing Host Information for VM Guest Systems openSUSE Leap 15.0

7. Install the client package vm-dump-metrics .

8. Run the command vm-dump-metrics . To save the result to a le, use the option -d
<filename> .

The result of the vm-dump-metrics is an XML output. The respective metric entries follow the
DTD /etc/vhostmd/metric.dtd .

For more information, see the manual pages man 8 vhostmd and /usr/share/doc/vhost-
md/README on the VM Host Server system. On the guest, see the manual page man 1 vm-dump-
metrics .

208 Providing Host Information for VM Guest Systems openSUSE Leap 15.0

23 XenStore: Configuration Database Shared be-
tween Domains

This section introduces basic information about XenStore, its role in the Xen environment, the
directory structure of les used by XenStore, and the description of XenStore's commands.

23.1 Introduction
XenStore is a database of configuration and status information shared between VM Guests and
the management tools running in Dom0. VM Guests and the management tools read and write to
XenStore to convey configuration information, status updates, and state changes. The XenStore
database is managed by Dom0 and supports simple operations such as reading and writing a
key. VM Guests and management tools can be notified of any changes in XenStore by watching
entries of interest. Note that the xenstored daemon is managed by the xencommons service.

XenStore is located on Dom0 in a single database le /var/lib/xenstored/tdb (tdb repre-
sents tree database).

23.2 File System Interface
XenStore database content is represented by a virtual le system similar to /proc (for more
information on /proc , see Book “System Analysis and Tuning Guide”, Chapter 2 “System Monitoring

Utilities”, Section 2.6 “The /proc File System”). The tree has three main paths: /vm , /local/domain ,
and /tool .

/vm - stores information about the VM Guest configuration.

/local/domain - stores information about VM Guest on the local node.

/tool - stores general information about various tools.

Tip
Each VM Guest has two different ID numbers. The universal unique identifier (UUID) re-
mains the same even if the VM Guest is migrated to another machine. The domain identi-
fier (DOMID) is an identification number that represents a particular running instance. It
typically changes when the VM Guest is migrated to another machine.

209 Introduction openSUSE Leap 15.0

23.2.1 XenStore Commands

The le system structure of the XenStore database can be operated with the following commands:

xenstore-ls

Displays the full dump of the XenStore database.

xenstore-read path_to_xenstore_entry

Displays the value of the specified XenStore entry.

xenstore-exists xenstore_path

Reports whether the specified XenStore path exists.

xenstore-list xenstore_path

Displays all the children entries of the specified XenStore path.

xenstore-write path_to_xenstore_entry

Updates the value of the specified XenStore entry.

xenstore-rm xenstore_path

Removes the specified XenStore entry or directory.

xenstore-chmod xenstore_path mode

Updates the read/write permission on the specified XenStore path.

xenstore-control

Sends a command to the xenstored back-end, such as triggering an integrity check.

23.2.2 /vm

The /vm path is indexed by the UUID of each VM Guest, and stores configuration information
such as the number of virtual CPUs and the amount of allocated memory. There is a /vm/<uuid>
directory for each VM Guest. To list the directory content, use xenstore-list .

tux > sudo xenstore-list /vm
00000000-0000-0000-0000-000000000000
9b30841b-43bc-2af9-2ed3-5a649f466d79-1

The rst line of the output belongs to Dom0, and the second one to a running VM Guest. The
following command lists all the entries related to the VM Guest:

tux > sudo xenstore-list /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1

210 XenStore Commands openSUSE Leap 15.0

image
rtc
device
pool_name
shadow_memory
uuid
on_reboot
start_time
on_poweroff
bootloader_args
on_crash
vcpus
vcpu_avail
bootloader
name

To read a value of an entry, for example the number of virtual CPUs dedicated to the VM Guest,
use xenstore-read :

tux > sudo xenstore-read /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1/vcpus
1

A list of selected /vm/<uuid> entries follows:

uuid

UUID of the VM Guest. It does not change during the migration process.

on_reboot

Specifies whether to destroy or restart the VM Guest in response to a reboot request.

on_poweroff

Specifies whether to destroy or restart the VM Guest in response to a halt request.

on_crash

Specifies whether to destroy or restart the VM Guest in response to a crash.

vcpus

Number of virtual CPUs allocated to the VM Guest.

vcpu_avail

Bitmask of active virtual CPUs for the VM Guest. The bitmask has several bits equal to the
value of vcpus , with a bit set for each online virtual CPU.

name

The name of the VM Guest.

211 /vm openSUSE Leap 15.0

Regular VM Guests (not Dom0) use the /vm/<uuid>/image path:

tux > sudo xenstore-list /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1/image
ostype
kernel
cmdline
ramdisk
dmargs
device-model
display

An explanation of the used entries follows:

ostype

The OS type of the VM Guest.

kernel

The path on Dom0 to the kernel for the VM Guest.

cmdline

The kernel command line for the VM Guest used when booting.

ramdisk

The path on Dom0 to the RAM disk for the VM Guest.

dmargs

Shows arguments passed to the QEMU process. If you look at the QEMU process with ps ,
you should see the same arguments as in /vm/<uuid>/image/dmargs .

23.2.3 /local/domain/<domid>

This path is indexed by the running domain (VM Guest) ID, and contains information about
the running VM Guest. Remember that the domain ID changes during VM Guest migration. The
following entries are available:

vm

The path of the /vm directory for this VM Guest.

on_reboot, on_poweroff, on_crash, name

See identical options in Section 23.2.2, “/vm”

domid

212 /local/domain/<domid> openSUSE Leap 15.0

Domain identifier for the VM Guest.

cpu

The current CPU to which the VM Guest is pinned.

cpu_weight

The weight assigned to the VM Guest for scheduling purposes. Higher weights use the
physical CPUs more often.

Apart from the individual entries described above, there are also several subdirectories under /
local/domain/<domid> , containing specific entries. To see all entries available, refer to XenS-

tore Reference (http://wiki.xen.org/wiki/XenStore_Reference) .

/local/domain/<domid>/memory

Contains memory information. /local/domain/<domid>/memory/target contains target
memory size for the VM Guest (in kilobytes).

/local/domain/<domid>/console

Contains information about a console used by the VM Guest.

/local/domain/<domid>/backend

Contains information about all back-end devices used by the VM Guest. The path has
subdirectories of its own.

/local/domain/<domid>/device

Contains information about the front-end devices for the VM Guest.

/local/domain/<domid>/device-misc

Contains miscellaneous information about devices.

/local/domain/<domid>/store

Contains information about the VM Guest's store.

213 /local/domain/<domid> openSUSE Leap 15.0

http://wiki.xen.org/wiki/XenStore_Reference
http://wiki.xen.org/wiki/XenStore_Reference

24 Xen as a High-Availability Virtualization Host

Setting up two Xen hosts as a failover system has several advantages compared to a setup where
every server runs on dedicated hardware.

Failure of a single server does not cause major interruption of the service.

A single big machine is normally way cheaper than multiple smaller machines.

Adding new servers as needed is a trivial task.

The usage of the server is improved, which has positive effects on the power consumption
of the system.

The setup of migration for Xen hosts is described in Section 22.3, “Migrating Xen VM Guest Systems”.
In the following, several typical scenarios are described.

24.1 Xen HA with Remote Storage
Xen can directly provide several remote block devices to the respective Xen guest systems. These
include iSCSI, NPIV, and NBD. All of these may be used to do live migrations. When a storage
system is already in place, rst try to use the same device type you already used in the network.

If the storage system cannot be used directly but provides a possibility to offer the needed space
over NFS, it is also possible to create image les on NFS. If the NFS le system is available on
all Xen host systems, this method also allows live migrations of Xen guests.

When setting up a new system, one of the main considerations is whether a dedicated storage
area network should be implemented. The following possibilities are available:

TABLE 24.1: XEN REMOTE STORAGE

Method Complexity Comments

Ethernet low Note that all block device
traffic goes over the same
Ethernet interface as the net-
work traffic. This may be
limiting the performance of
the guest.

214 Xen HA with Remote Storage openSUSE Leap 15.0

Method Complexity Comments

Ethernet dedicated to stor-
age.

medium Running the storage traffic
over a dedicated Ethernet in-
terface may eliminate a bot-
tleneck on the server side.
However, planning your own
network with your own IP
address range and possibly
a VLAN dedicated to storage
requires numerous considera-
tions.

NPIV high NPIV is a method to virtu-
alize Fibre channel connec-
tions. This is available with
adapters that support a data
rate of at least 4 Gbit/s and
allows the setup of complex
storage systems.

Typically, a 1 Gbit/s Ethernet device can fully use a typical hard disk or storage system. When
using very fast storage systems, such an Ethernet device will probably limit the speed of the
system.

24.2 Xen HA with Local Storage
For space or budget reasons, it may be necessary to rely on storage that is local to the Xen
host systems. To still maintain the possibility of live migrations, it is necessary to build block
devices that are mirrored to both Xen hosts. The software that allows this is called Distributed
Replicated Block Device (DRBD).

If a system that uses DRBD to mirror the block devices or les between two Xen hosts should be
set up, both hosts should use the identical hardware. If one of the hosts has slower hard disks,
both hosts will suffer from this limitation.

During the setup, each of the required block devices should use its own DRBD device. The setup
of such a system is quite a complex task.

215 Xen HA with Local Storage openSUSE Leap 15.0

24.3 Xen HA and Private Bridges
When using several guest systems that need to communicate between each other, it is possible
to do this over the regular interface. However, for security reasons it may be advisable to create
a bridge that is only connected to guest systems.

In an HA environment that also should support live migrations, such a private bridge must be
connected to the other Xen hosts. This is possible by using dedicated physical Ethernet devices
and a dedicated network.

A different implementation method is using VLAN interfaces. In that case, all the traffic goes
over the regular Ethernet interface. However, the VLAN interface does not get the regular traffic,
because only the VLAN packets that are tagged for the correct VLAN are forwarded.

For more information about the setup of a VLAN interface see Section 12.2.3, “Using VLAN Inter-

faces”.

216 Xen HA and Private Bridges openSUSE Leap 15.0

V Managing Virtual Machines with
QEMU

25 QEMU Overview 218

26 Setting Up a KVM VM Host Server 219

27 Guest Installation 229

28 Running Virtual Machines with qemu-system-ARCH 245

29 Virtual Machine Administration Using QEMU Monitor 272

25 QEMU Overview

QEMU is a fast, cross-platform open source machine emulator which can emulate a huge number
of hardware architectures for you. QEMU lets you run a complete unmodified operating system
(VM Guest) on top of your existing system (VM Host Server).

You can also use QEMU for debugging purposes—you can easily stop your running virtual ma-
chine, inspect its state and save and restore it later.

QEMU consists of the following parts:

processor emulator (x86, IBM Z, PowerPC, Sparc)

emulated devices (graphic card, network card, hard disks, mice)

generic devices used to connect the emulated devices to the related host devices

descriptions of the emulated machines (PC, Power Mac)

debugger

user interface used to interact with the emulator

QEMU is central to KVM and Xen Virtualization, where it provides the general machine emula-
tion. Xen's usage of QEMU is somewhat hidden from the user, while KVM's usage exposes most
QEMU features transparently. If the VM Guest hardware architecture is the same as the VM Host
Server's architecture, QEMU can take advantage of the KVM acceleration (SUSE only supports
QEMU with the KVM acceleration loaded).

Apart from providing a core virtualization infrastructure and processor-specific drivers, QEMU
also provides an architecture-specific user space program for managing VM Guests. Depending
on the architecture this program is one of:

qemu-system-i386

qemu-system-s390x

qemu-system-x86_64

In the following this command is called qemu-system-ARCH ; in examples the qemu-sys-
tem-x86_64 command is used.

218 openSUSE Leap 15.0

26 Setting Up a KVM VM Host Server

This section documents how to set up and use openSUSE Leap 15.0 as a QEMU-KVM based
virtual machine host.

Tip: Resources
In general, the virtual guest system needs the same hardware resources as when installed
on a physical machine. The more guests you plan to run on the host system, the more
hardware resources—CPU, disk, memory, and network—you need to add to the VM Host
Server.

26.1 CPU Support for Virtualization

To run KVM, your CPU must support virtualization, and virtualization needs to be enabled in
BIOS. The le /proc/cpuinfo includes information about your CPU features.

26.2 Required Software

The KVM host requires several packages to be installed. To install all necessary packages, do
the following:

1. Run YaST Virtualization Install Hypervisor and Tools.

219 CPU Support for Virtualization openSUSE Leap 15.0

FIGURE 26.1: INSTALLING THE KVM HYPERVISOR AND TOOLS

2. Select KVM server and preferably also KVM tools, and confirm with Accept.

3. During the installation process, you can optionally let YaST create a Network Bridge for
you automatically. If you do not plan to dedicate an additional physical network card to
your virtual guests, network bridge is a standard way to connect the guest machines to
the network.

FIGURE 26.2: NETWORK BRIDGE

220 Required Software openSUSE Leap 15.0

4. After all the required packages are installed (and new network setup activated), try to
load the KVM kernel module relevant for your CPU type— kvm-intel or kvm-amd :

root # modprobe kvm-intel

Check if the module is loaded into memory:

tux > lsmod | grep kvm
kvm_intel 64835 6
kvm 411041 1 kvm_intel

Now the KVM host is ready to serve KVM VM Guests. For more information, see Chapter 28,

Running Virtual Machines with qemu-system-ARCH.

26.3 KVM Host-Specific Features
You can improve the performance of KVM-based VM Guests by letting them fully use specific
features of the VM Host Server's hardware (paravirtualization). This section introduces techniques
to make the guests access the physical host's hardware directly—without the emulation layer—
to make the most use of it.

Tip
Examples included in this section assume basic knowledge of the qemu-system-ARCH
command line options. For more information, see Chapter 28, Running Virtual Machines with

qemu-system-ARCH.

26.3.1 Using the Host Storage with virtio-scsi

virtio-scsi is an advanced storage stack for KVM. It replaces the former virtio-blk stack
for SCSI devices pass-through. It has several advantages over virtio-blk :

Improved scalability

KVM guests have a limited number of PCI controllers, which results in a limited number of
possibly attached devices. virtio-scsi solves this limitation by grouping multiple stor-
age devices on a single controller. Each device on a virtio-scsi controller is represented
as a logical unit, or LUN.

221 KVM Host-Specific Features openSUSE Leap 15.0

Standard command set

virtio-blk uses a small set of commands that need to be known to both the virtio-blk
driver and the virtual machine monitor, and so introducing a new command requires up-
dating both the driver and the monitor.
By comparison, virtio-scsi does not define commands, but rather a transport protocol
for these commands following the industry-standard SCSI specification. This approach is
shared with other technologies, such as Fibre Channel, ATAPI, and USB devices.

Device naming

virtio-blk devices are presented inside the guest as /dev/vdX , which is different from
device names in physical systems and may cause migration problems.
virtio-scsi keeps the device names identical to those on physical systems, making the
virtual machines easily relocatable.

SCSI device pass-through

For virtual disks backed by a whole LUN on the host, it is preferable for the guest to send
SCSI commands directly to the LUN (pass-through). This is limited in virtio-blk , as
guests need to use the virtio-blk protocol instead of SCSI command pass-through, and,
moreover, it is not available for Windows guests. virtio-scsi natively removes these
limitations.

26.3.1.1 virtio-scsi Usage

KVM supports the SCSI pass-through feature with the virtio-scsi-pci device:

root # qemu-system-x86_64 [...] \
-device virtio-scsi-pci,id=scsi

26.3.2 Accelerated Networking with vhost-net
The vhost-net module is used to accelerate KVM's paravirtualized network drivers. It provides
better latency and greater network throughput. Use the vhost-net driver by starting the guest
with the following example command line:

root # qemu-system-x86_64 [...] \
-netdev tap,id=guest0,vhost=on,script=no \
-net nic,model=virtio,netdev=guest0,macaddr=00:16:35:AF:94:4B

Note that guest0 is an identification string of the vhost-driven device.

222 Accelerated Networking with vhost-net openSUSE Leap 15.0

26.3.3 Scaling Network Performance with Multiqueue virtio-net

As the number of virtual CPUs increases in VM Guests, QEMU offers a way of improving the
network performance using multiqueue. Multiqueue virtio-net scales the network performance by
allowing VM Guest virtual CPUs to transfer packets in parallel. Multiqueue support is required
on both the VM Host Server and VM Guest sides.

Tip: Performance Benefit
The multiqueue virtio-net solution is most beneficial in the following cases:

Network traffic packets are large.

VM Guest has many connections active at the same time, mainly between the guest
systems, or between the guest and the host, or between the guest and an external
system.

The number of active queues is equal to the number of virtual CPUs in the VM Guest.

Note
While multiqueue virtio-net increases the total network throughput, it increases CPU con-
sumption as it uses of the virtual CPU's power.

PROCEDURE 26.1: HOW TO ENABLE MULTIQUEUE VIRTIO-NET

The following procedure lists important steps to enable the multiqueue feature with qe-
mu-system-ARCH . It assumes that a tap network device with multiqueue capability (sup-
ported since kernel version 3.8) is set up on the VM Host Server.

1. In qemu-system-ARCH , enable multiqueue for the tap device:

-netdev tap,vhost=on,queues=2*N

where N stands for the number of queue pairs.

2. In qemu-system-ARCH , enable multiqueue and specify MSI-X (Message Signaled Inter-
rupt) vectors for the virtio-net-pci device:

-device virtio-net-pci,mq=on,vectors=2*N+2

223 Scaling Network Performance with Multiqueue virtio-net openSUSE Leap 15.0

where the formula for the number of MSI-X vectors results from: N vectors for TX (trans-
mit) queues, N for RX (receive) queues, one for configuration purposes, and one for pos-
sible VQ (vector quantization) control.

3. In VM Guest, enable multiqueue on the relevant network interface (eth0 in this example):

tux > sudo ethtool -L eth0 combined 2*N

The resulting qemu-system-ARCH command line will look similar to the following example:

qemu-system-x86_64 [...] -netdev tap,id=guest0,queues=8,vhost=on \
-device virtio-net-pci,netdev=guest0,mq=on,vectors=10

Note that the id of the network device (guest0) needs to be identical for both options.

Inside the running VM Guest, specify the following command with root privileges:

tux > sudo ethtool -L eth0 combined 8

Now the guest system networking uses the multiqueue support from the qemu-system-ARCH
hypervisor.

26.3.4 VFIO: Secure Direct Access to Devices

Directly assigning a PCI device to a VM Guest (PCI pass-through) avoids performance issues
caused by avoiding any emulation in performance-critical paths. VFIO replaces the traditional
KVM PCI Pass-Through device assignment. A prerequisite for this feature is a VM Host Server
configuration as described in Important: Requirements for VFIO and SR-IOV.

To be able to assign a PCI device via VFIO to a VM Guest, you need to nd out which IOMMU
Group it belongs to. The IOMMU (input/output memory management unit that connects a direct
memory access-capable I/O bus to the main memory) API supports the notion of groups. A group
is a set of devices that can be isolated from all other devices in the system. Groups are therefore
the unit of ownership used by VFIO.

PROCEDURE 26.2: ASSIGNING A PCI DEVICE TO A VM GUEST VIA VFIO

1. Identify the host PCI device to assign to the guest.

tux > sudo lspci -nn
[...]

224 VFIO: Secure Direct Access to Devices openSUSE Leap 15.0

00:10.0 Ethernet controller [0200]: Intel Corporation 82576 \
Virtual Function [8086:10ca] (rev 01)
[...]

Note down the device ID (00:10.0 in this case) and the vendor ID (8086:10ca).

2. Find the IOMMU group of this device:

tux > sudo readlink /sys/bus/pci/devices/0000\:00\:10.0/iommu_group
../../../kernel/iommu_groups/20

The IOMMU group for this device is 20 . Now you can check the devices belonging to the
same IOMMU group:

tux > sudo ls -l /sys/bus/pci/devices/0000:01:10.0/iommu_group/devices/0000:01:10.0
[...] 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0
[...] 0000:01:10.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:01:10.0
[...] 0000:01:10.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:01:10.1

3. Unbind the device from the device driver:

tux > sudo echo "0000:01:10.0" > /sys/bus/pci/devices/0000\:01\:10.0/driver/unbind

4. Bind the device to the vo-pci driver using the vendor ID from step 1:

tux > sudo echo "8086 153a" > /sys/bus/pci/drivers/vfio-pci/new_id

A new device /dev/vfio/IOMMU_GROUP will be created as a result, /dev/vfio/20 in this
case.

5. Change the ownership of the newly created device:

tux > sudo chown qemu.qemu /dev/vfio/DEVICE

6. Now run the VM Guest with the PCI device assigned.

tux > sudo qemu-system-ARCH [...] -device
 vfio-pci,host=00:10.0,id=ID

Important: No Hotplugging
As of openSUSE Leap 15.0 hotplugging of PCI devices passed to a VM Guest via VFIO
is not supported.

225 VFIO: Secure Direct Access to Devices openSUSE Leap 15.0

You can nd more detailed information on the VFIO driver in the /usr/src/linux/Documen-
tation/vfio.txt le (package kernel-source needs to be installed).

26.3.5 VirtFS: Sharing Directories between Host and Guests

VM Guests usually run in a separate computing space—they are provided their own memory
range, dedicated CPUs, and le system space. The ability to share parts of the VM Host Server's
le system makes the virtualization environment more flexible by simplifying mutual data ex-
change. Network le systems, such as CIFS and NFS, have been the traditional way of sharing
directories. But as they are not specifically designed for virtualization purposes, they suffer from
major performance and feature issues.

KVM introduces a new optimized method called VirtFS (sometimes called “le system pass-
through”). VirtFS uses a paravirtual le system driver, which avoids converting the guest appli-
cation le system operations into block device operations, and then again into host le system
operations.

You typically use VirtFS for the following situations:

To access a shared directory from several guests, or to provide guest-to-guest le system
access.

To replace the virtual disk as the root le system to which the guest's RAM disk connects
during the guest boot process.

To provide storage services to different customers from a single host le system in a cloud
environment.

26.3.5.1 Implementation

In QEMU, the implementation of VirtFS is simplified by defining two types of devices:

virtio-9p-pci device which transports protocol messages and data between the host
and the guest.

fsdev device which defines the export le system properties, such as le system type and
security model.

EXAMPLE 26.1: EXPORTING HOST'S FILE SYSTEM WITH VIRTFS

tux > sudo qemu-system-x86_64 [...] \

226 VirtFS: Sharing Directories between Host and Guests openSUSE Leap 15.0

-fsdev local,id=exp1 1 ,path=/tmp/ 2 ,security_model=mapped 3 \
-device virtio-9p-pci,fsdev=exp1 4 ,mount_tag=v_tmp 5

1 Identification of the le system to be exported.

2 File system path on the host to be exported.

3 Security model to be used— mapped keeps the guest le system modes and permis-
sions isolated from the host, while none invokes a “pass-through” security model in
which permission changes on the guest's les are reflected on the host as well.

4 The exported le system ID defined before with -fsdev id= .

5 Mount tag used later on the guest to mount the exported le system.

Such an exported le system can be mounted on the guest as follows:

tux > sudo mount -t 9p -o trans=virtio v_tmp /mnt

where v_tmp is the mount tag defined earlier with -device mount_tag= and /mnt is
the mount point where you want to mount the exported le system.

26.3.6 KSM: Sharing Memory Pages between Guests

Kernel Same Page Merging (KSM) is a Linux kernel feature that merges identical memory pages
from multiple running processes into one memory region. Because KVM guests run as processes
under Linux, KSM provides the memory overcommit feature to hypervisors for more efficient
use of memory. Therefore, if you need to run multiple virtual machines on a host with limited
memory, KSM may be helpful to you.

KSM stores its status information in the les under the /sys/kernel/mm/ksm directory:

tux > ls -1 /sys/kernel/mm/ksm
full_scans
merge_across_nodes
pages_shared
pages_sharing
pages_to_scan
pages_unshared
pages_volatile
run
sleep_millisecs

For more information on the meaning of the /sys/kernel/mm/ksm/* les, see /usr/src/
linux/Documentation/vm/ksm.txt (package kernel-source).

227 KSM: Sharing Memory Pages between Guests openSUSE Leap 15.0

To use KSM, do the following.

1. Although openSUSE Leap includes KSM support in the kernel, it is disabled by default. To
enable it, run the following command:

root # echo 1 > /sys/kernel/mm/ksm/run

2. Now run several VM Guests under KVM and inspect the content of les pages_sharing
and pages_shared , for example:

tux > while [1]; do cat /sys/kernel/mm/ksm/pages_shared; sleep 1; done
13522
13523
13519
13518
13520
13520
13528

228 KSM: Sharing Memory Pages between Guests openSUSE Leap 15.0

27 Guest Installation

The libvirt -based tools such as virt-manager and virt-install offer convenient inter-
faces to set up and manage virtual machines. They act as a kind of wrapper for the qemu-sys-
tem-ARCH command. However, it is also possible to use qemu-system-ARCH directly without
using libvirt -based tools.

Warning: qemu-system-ARCH and libvirt
Virtual Machines created with qemu-system-ARCH are not "visible" for the libvirt -based
tools.

27.1 Basic Installation with qemu-system-ARCH
In the following example, a virtual machine for a SUSE Linux Enterprise Server 11 installation
is created. For detailed information on the commands, refer to the respective man pages.

If you do not already have an image of a system that you want to run in a virtualized environ-
ment, you need to create one from the installation media. In such case, you need to prepare a
hard disk image, and obtain an image of the installation media or the media itself.

Create a hard disk with qemu-img .

tux > qemu-img create 1 -f raw 2 /images/sles/hda 3 8G 4

1 The subcommand create tells qemu-img to create a new image.

2 Specify the disk's format with the -f parameter.

3 The full path to the image le.

4 The size of the image—8 GB in this case. The image is created as a Sparse image file le
that grows when the disk is lled with data. The specified size defines the maximum size
to which the image le can grow.

After at least one hard disk image is created, you can set up a virtual machine with qemu-sys-
tem-ARCH that will boot into the installation system:

root # qemu-system-x86_64 -name "sles" 1 -machine accel=kvm -M pc 2 -m 768 3 \
-smp 2 4 -boot d 5 \
-drive file=/images/sles/hda,if=virtio,index=0,media=disk,format=raw 6 \
-drive file=/isos/SLES-11-SP3-DVD-x86_64-GM-DVD1.iso,index=1,media=cdrom 7 \

229 Basic Installation with qemu-system-ARCH openSUSE Leap 15.0

-net nic,model=virtio,macaddr=52:54:00:05:11:11 8 -net user \
-vga cirrus 9 -balloon virtio 10

1 Name of the virtual machine that will be displayed in the window caption and be used for
the VNC server. This name must be unique.

2 Specifies the machine type. Use qemu-system-ARCH -M ? to display a list of valid para-
meters. pc is the default Standard PC.

3 Maximum amount of memory for the virtual machine.

4 Defines an SMP system with two processors.

5 Specifies the boot order. Valid values are a , b (floppy 1 and 2), c (rst hard disk), d
(rst CD-ROM), or n to p (Ether-boot from network adapter 1-3). Defaults to c .

6 Defines the rst (index=0) hard disk. It will be accessed as a paravirtualized (if=virtio)
drive in raw format.

7 The second (index=1) image drive will act as a CD-ROM.

8 Defines a paravirtualized (model=virtio) network adapter with the MAC address
52:54:00:05:11:11 . Be sure to specify a unique MAC address, otherwise a network con-
flict may occur.

9 Specifies the graphic card. If you specify none , the graphic card will be disabled.

10 Defines the paravirtualized balloon device that allows to dynamically change the amount
of memory (up to the maximum value specified with the parameter -m).

After the installation of the guest operating system finishes, you can start the related virtual
machine without the need to specify the CD-ROM device:

root # qemu-system-x86_64 -name "sles" -machine type=pc,accel=kvm -m 768 \
-smp 2 -boot c \
-drive file=/images/sles/hda,if=virtio,index=0,media=disk,format=raw \
-net nic,model=virtio,macaddr=52:54:00:05:11:11 \
-vga cirrus -balloon virtio

27.2 Managing Disk Images with qemu-img
In the previous section (see Section 27.1, “Basic Installation with qemu-system-ARCH”), we used
the qemu-img command to create an image of a hard disk. You can, however, use qemu-img
for general disk image manipulation. This section introduces qemu-img subcommands to help
manage the disk images flexibly.

230 Managing Disk Images with qemu-img openSUSE Leap 15.0

27.2.1 General Information on qemu-img Invocation

qemu-img uses subcommands (like zypper does) to do specific tasks. Each subcommand un-
derstands a different set of options. Some options are general and used by more of these subcom-
mands, while some are unique to the related subcommand. See the qemu-img manual page (man
1 qemu-img) for a list of all supported options. qemu-img uses the following general syntax:

tux > qemu-img subcommand [options]

and supports the following subcommands:

create

Creates a new disk image on the le system.

check

Checks an existing disk image for errors.

compare

Check if two images have the same content.

map

Dumps the metadata of the image le name and its backing le chain.

amend

Amends the image format specific options for the image le name.

convert

Converts an existing disk image to a new one in a different format.

info

Displays information about the relevant disk image.

snapshot

Manages snapshots of existing disk images.

commit

Applies changes made to an existing disk image.

rebase

Creates a new base image based on an existing image.

resize

231 General Information on qemu-img Invocation openSUSE Leap 15.0

Increases or decreases the size of an existing image.

27.2.2 Creating, Converting and Checking Disk Images

This section describes how to create disk images, check their condition, convert a disk image
from one format to another, and get detailed information about a particular disk image.

27.2.2.1 qemu-img create

Use qemu-img create to create a new disk image for your VM Guest operating system. The
command uses the following syntax:

tux > qemu-img create -f fmt 1 -o options 2 fname 3 size 4

1 The format of the target image. Supported formats are raw , and qcow2 .

2 Some image formats support additional options to be passed on the command line. You
can specify them here with the -o option. The raw image format supports only the size
option, so it is possible to insert -o size=8G instead of adding the size option at the end
of the command.

3 Path to the target disk image to be created.

4 Size of the target disk image (if not already specified with the -o size=<image_size>
option. Optional suffixes for the image size are K (kilobyte), M (megabyte), G (gigabyte),
or T (terabyte).

To create a new disk image sles.raw in the directory /images growing up to a maximum size
of 4 GB, run the following command:

tux > qemu-img create -f raw -o size=4G /images/sles.raw
Formatting '/images/sles.raw', fmt=raw size=4294967296

tux > ls -l /images/sles.raw
-rw-r--r-- 1 tux users 4294967296 Nov 15 15:56 /images/sles.raw

tux > qemu-img info /images/sles.raw
image: /images/sles11.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 0

232 Creating, Converting and Checking Disk Images openSUSE Leap 15.0

As you can see, the virtual size of the newly created image is 4 GB, but the actual reported disk
size is 0 as no data has been written to the image yet.

Tip: VM Guest Images on the Btrfs File System
If you need to create a disk image on the Btrfs le system, you can use nocow=on to
reduce the performance overhead created by the copy-on-write feature of Btrfs:

tux > qemu-img create -o nocow=on test.img 8G

If you, however, want to use copy-on-write (for example for creating snapshots or sharing
them across virtual machines), then leave the command line without the nocow option.

27.2.2.2 qemu-img convert

Use qemu-img convert to convert disk images to another format. To get a complete list of
image formats supported by QEMU, run qemu-img -h and look at the last line of the output.
The command uses the following syntax:

tux > qemu-img convert -c 1 -f fmt 2 -O out_fmt 3 -o options 4 fname 5 out_fname 6

1 Applies compression on the target disk image. Only qcow and qcow2 formats support
compression.

2 The format of the source disk image. It is usually autodetected and can therefore be omitted.

3 The format of the target disk image.

4 Specify additional options relevant for the target image format. Use -o ? to view the list
of options supported by the target image format.

5 Path to the source disk image to be converted.

6 Path to the converted target disk image.

tux > qemu-img convert -O vmdk /images/sles.raw \
/images/sles.vmdk

tux > ls -l /images/
-rw-r--r-- 1 tux users 4294967296 16. lis 10.50 sles.raw
-rw-r--r-- 1 tux users 2574450688 16. lis 14.18 sles.vmdk

233 Creating, Converting and Checking Disk Images openSUSE Leap 15.0

To see a list of options relevant for the selected target image format, run the following command
(replace vmdk with your image format):

tux > qemu-img convert -O vmdk /images/sles.raw \
/images/sles.vmdk -o ?
Supported options:
size Virtual disk size
backing_file File name of a base image
compat6 VMDK version 6 image
subformat VMDK flat extent format, can be one of {monolithicSparse \
 (default) | monolithicFlat | twoGbMaxExtentSparse | twoGbMaxExtentFlat}
scsi SCSI image

27.2.2.3 qemu-img check

Use qemu-img check to check the existing disk image for errors. Not all disk image formats
support this feature. The command uses the following syntax:

tux > qemu-img check -f fmt 1 fname 2

1 The format of the source disk image. It is usually autodetected and can therefore be omitted.

2 Path to the source disk image to be checked.

If no error is found, the command returns no output. Otherwise, the type and number of errors
found is shown.

tux > qemu-img check -f qcow2 /images/sles.qcow2
ERROR: invalid cluster offset=0x2af0000
[...]
ERROR: invalid cluster offset=0x34ab0000
378 errors were found on the image.

27.2.2.4 Increasing the Size of an Existing Disk Image

When creating a new image, you must specify its maximum size before the image is created
(see Section 27.2.2.1, “qemu-img create”). After you have installed the VM Guest and have been
using it for some time, the initial size of the image may no longer be sufficient. In that case,
add more space to it.

234 Creating, Converting and Checking Disk Images openSUSE Leap 15.0

To increase the size of an existing disk image by 2 gigabytes, use:

tux > qemu-img resize /images/sles.raw +2GB

Note
You can resize the disk image using the formats raw , and qcow2 . To resize an image in
another format, convert it to a supported format with qemu-img convert rst.

The image now contains an empty space of 2 GB after the final partition. You can resize the
existing partitions or add new ones.

FIGURE 27.1: NEW 2 GB PARTITION IN GUEST YAST PARTITIONER

27.2.2.5 Advanced Options for the qcow2 File Format

qcow2 is the main disk image format used by QEMU. Its size grows on demand, and the disk
space is only allocated when it is actually needed by the virtual machine.

235 Creating, Converting and Checking Disk Images openSUSE Leap 15.0

A qcow2 formatted le is organized in units of constant size. These units are called clusters.
Viewed from the guest side, the virtual disk is also divided into clusters of the same size. QEMU
defaults to 64 kB clusters, but you can specify a different value when creating a new image:

tux > qemu-img create -f qcow2 -o cluster_size=128K virt_disk.qcow2 4G

A qcow2 image contains a set of tables organized in two levels that are called the L1 and L2
tables. There is just one L1 table per disk image, while there can be many L2 tables depending
on how big the image is.

To read or write data to the virtual disk, QEMU needs to read its corresponding L2 table to
nd out the relevant data location. Because reading the table for each I/O operation consumes
system resources, QEMU keeps a cache of L2 tables in memory to speed up disk access.

27.2.2.5.1 Choosing the Right Cache Size

The cache size relates to the amount of allocated space. L2 cache can map the following amount
of virtual disk:

disk_size = l2_cache_size * cluster_size / 8

With the default 64 kB of cluster size, that is

disk_size = l2_cache_size * 8192

Therefore, to have a cache that maps n gigabytes of disk space with the default cluster size,
you need

l2_cache_size = disk_size_GB * 131072

QEMU uses 1 MB (1048576 bytes) of L2 cache by default. Following the above formulas, 1 MB
of L2 cache covers 8 GB (1048576 / 131072) of virtual disk. This means that the performance
is ne with the default L2 cache size if your virtual disk size is up to 8 GB. For larger disks, you
can speed up the disk access by increasing the L2 cache size.

27.2.2.5.2 Configuring the Cache Size

You can use the -drive option on the QEMU command line to specify the cache sizes. Alterna-
tively when communicating via QMP, use the blockdev-add command. For more information
on QMP, see Section 29.11, “QMP - QEMU Machine Protocol”.

236 Creating, Converting and Checking Disk Images openSUSE Leap 15.0

The following options configure the cache size for the virtual guest:

l2-cache-size

The maximum size of the L2 table cache.

refcount-cache-size

The maximum size of the refcount block cache. For more information on refcount, see
https://raw.githubusercontent.com/qemu/qemu/master/docs/qcow2-cache.txt .

cache-size

The maximum size of both caches combined.

When specifying values for the options above, be aware of the following:

The size of both the L2 and refcount block caches needs to be a multiple of the cluster size.

If you only set one of the options, QEMU will automatically adjust the other options so
that the L2 cache is 4 times bigger than the refcount cache.

The refcount cache is used much less often than the L2 cache, therefore you can keep it relatively
small:

root # qemu-system-ARCH [...] \
 -drive file=disk_image.qcow2,l2-cache-size=4194304,refcount-cache-size=262144

27.2.2.5.3 Reducing the Memory Usage

The larger the cache, the more memory it consumes. There is a separate L2 cache for each qcow2
le. When using a lot of big disk images, you will probably need a considerably large amount of
memory. Memory consumption is even worse if you add backing les (Section 27.2.4, “Manipulate

Disk Images Effectively”) and snapshots (see Section 27.2.3, “Managing Snapshots of Virtual Machines

with qemu-img”) to the guest's setup chain.

That is why QEMU introduced the cache-clean-interval setting. It defines an interval in
seconds after which all cache entries that have not been accessed are removed from memory.

The following example removes all unused cache entries every 10 minutes:

root # qemu-system-ARCH [...] -drive file=hd.qcow2,cache-clean-interval=600

If this option is not set, the default value is 0 and it disables this feature.

237 Creating, Converting and Checking Disk Images openSUSE Leap 15.0

https://raw.githubusercontent.com/qemu/qemu/master/docs/qcow2-cache.txt

27.2.3 Managing Snapshots of Virtual Machines with qemu-img

Virtual Machine snapshots are snapshots of the complete environment in which a VM Guest is
running. The snapshot includes the state of the processor (CPU), memory (RAM), devices, and
all writable disks.

Snapshots are helpful when you need to save your virtual machine in a particular state. For
example, after you configured network services on a virtualized server and want to quickly
start the virtual machine in the same state you last saved it. Or you can create a snapshot after
the virtual machine has been powered o to create a backup state before you try something
experimental and possibly make VM Guest unstable. This section introduces the latter case,
while the former is described in Chapter 29, Virtual Machine Administration Using QEMU Monitor.

To use snapshots, your VM Guest must contain at least one writable hard disk image in qcow2
format. This device is usually the rst virtual hard disk.

Virtual Machine snapshots are created with the savevm command in the interactive QEMU mon-
itor. To make identifying a particular snapshot easier, you can assign it a tag. For more infor-
mation on QEMU monitor, see Chapter 29, Virtual Machine Administration Using QEMU Monitor.

Once your qcow2 disk image contains saved snapshots, you can inspect them with the qemu-img
snapshot command.

Warning: Shut Down the VM Guest
Do not create or delete virtual machine snapshots with the qemu-img snapshot com-
mand while the virtual machine is running. Otherwise, you may damage the disk image
with the state of the virtual machine saved.

27.2.3.1 Listing Existing Snapshots

Use qemu-img snapshot -l DISK_IMAGE to view a list of all existing snapshots saved in the
disk_image image. You can get the list even while the VM Guest is running.

tux > qemu-img snapshot -l /images/sles.qcow2
Snapshot list:
ID 1 TAG 2 VM SIZE 3 DATE 4 VM CLOCK 5

1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965

238 Managing Snapshots of Virtual Machines with qemu-img openSUSE Leap 15.0

1 Unique identification number of the snapshot. Usually auto-incremented.

2 Unique description string of the snapshot. It is meant as a human-readable version of the ID.

3 The disk space occupied by the snapshot. Note that the more memory is consumed by
running applications, the bigger the snapshot is.

4 Time and date the snapshot was created.

5 The current state of the virtual machine's clock.

27.2.3.2 Creating Snapshots of a Powered-Off Virtual Machine

Use qemu-img snapshot -c SNAPSHOT_TITLE DISK_IMAGE to create a snapshot of the current
state of a virtual machine that was previously powered o.

tux > qemu-img snapshot -c backup_snapshot /images/sles.qcow2

tux > qemu-img snapshot -l /images/sles.qcow2
Snapshot list:
ID TAG VM SIZE DATE VM CLOCK
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965
5 backup_snapshot 0 2013-11-22 14:14:00 00:00:00.000

If something breaks in your VM Guest and you need to restore the state of the saved snapshot
(ID 5 in our example), power o your VM Guest and execute the following command:

tux > qemu-img snapshot -a 5 /images/sles.qcow2

The next time you run the virtual machine with qemu-system-ARCH , it will be in the state of
snapshot number 5.

Note
The qemu-img snapshot -c command is not related to the savevm command of QEMU
monitor (see Chapter 29, Virtual Machine Administration Using QEMU Monitor). For example,
you cannot apply a snapshot with qemu-img snapshot -a on a snapshot created with
savevm in QEMU's monitor.

239 Managing Snapshots of Virtual Machines with qemu-img openSUSE Leap 15.0

27.2.3.3 Deleting Snapshots

Use qemu-img snapshot -d SNAPSHOT_ID DISK_IMAGE to delete old or unneeded snapshots
of a virtual machine. This saves some disk space inside the qcow2 disk image as the space
occupied by the snapshot data is restored:

tux > qemu-img snapshot -d 2 /images/sles.qcow2

27.2.4 Manipulate Disk Images Effectively

Imagine the following real-life situation: you are a server administrator who runs and manages
several virtualized operating systems. One group of these systems is based on one specific distri-
bution, while another group (or groups) is based on different versions of the distribution or even
on a different (and maybe non-Unix) platform. To make the case even more complex, individual
virtual guest systems based on the same distribution usually differ according to the department
and deployment. A le server typically uses a different setup and services than a Web server
does, while both may still be based on openSUSE.

With QEMU it is possible to create “base” disk images. You can use them as template virtual
machines. These base images will save you plenty of time because you will never need to install
the same operating system more than once.

27.2.4.1 Base and Derived Images

First, build a disk image as usual and install the target system on it. For more information, see
Section 27.1, “Basic Installation with qemu-system-ARCH” and Section 27.2.2, “Creating, Converting and

Checking Disk Images”. Then build a new image while using the rst one as a base image. The base
image is also called a backing le. After your new derived image is built, never boot the base
image again, but boot the derived image instead. Several derived images may depend on one
base image at the same time. Therefore, changing the base image can damage the dependencies.
While using your derived image, QEMU writes changes to it and uses the base image only for
reading.

It is a good practice to create a base image from a freshly installed (and, if needed, registered)
operating system with no patches applied and no additional applications installed or removed.
Later on, you can create another base image with the latest patches applied and based on the
original base image.

240 Manipulate Disk Images Effectively openSUSE Leap 15.0

27.2.4.2 Creating Derived Images

Note
While you can use the raw format for base images, you cannot use it for derived images
because the raw format does not support the backing_file option. Use for example
the qcow2 format for the derived images.

For example, /images/sles_base.raw is the base image holding a freshly installed system.

tux > qemu-img info /images/sles_base.raw
image: /images/sles_base.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 2.4G

The image's reserved size is 4 GB, the actual size is 2.4 GB, and its format is raw . Create an
image derived from the /images/sles_base.raw base image with:

tux > qemu-img create -f qcow2 /images/sles_derived.qcow2 \
-o backing_file=/images/sles_base.raw
Formatting '/images/sles_derived.qcow2', fmt=qcow2 size=4294967296 \
backing_file='/images/sles_base.raw' encryption=off cluster_size=0

Look at the derived image details:

tux > qemu-img info /images/sles_derived.qcow2
image: /images/sles_derived.qcow2
file format: qcow2
virtual size: 4.0G (4294967296 bytes)
disk size: 140K
cluster_size: 65536
backing file: /images/sles_base.raw \
(actual path: /images/sles_base.raw)

Although the reserved size of the derived image is the same as the size of the base image (4 GB),
the actual size is 140 KB only. The reason is that only changes made to the system inside the
derived image are saved. Run the derived virtual machine, register it, if needed, and apply the
latest patches. Do any other changes in the system such as removing unneeded or installing new
software packages. Then shut the VM Guest down and examine its details once more:

tux > qemu-img info /images/sles_derived.qcow2
image: /images/sles_derived.qcow2
file format: qcow2

241 Manipulate Disk Images Effectively openSUSE Leap 15.0

virtual size: 4.0G (4294967296 bytes)
disk size: 1.1G
cluster_size: 65536
backing file: /images/sles_base.raw \
(actual path: /images/sles_base.raw)

The disk size value has grown to 1.1 GB, which is the disk space occupied by the changes
on the le system compared to the base image.

27.2.4.3 Rebasing Derived Images

After you have modified the derived image (applied patches, installed specific applications,
changed environment settings, etc.), it reaches the desired state. At that point, you can merge
the original base image and the derived image to create a new base image.

Your original base image (/images/sles_base.raw) holds a freshly installed system. It can be
a template for new modified base images, while the new one can contain the same system as the
rst one plus all security and update patches applied, for example. After you have created this
new base image, you can use it as a template for more specialized derived images as well. The
new base image becomes independent of the original one. The process of creating base images
from derived ones is called rebasing:

tux > qemu-img convert /images/sles_derived.qcow2 \
-O raw /images/sles_base2.raw

This command created the new base image /images/sles_base2.raw using the raw format.

tux > qemu-img info /images/sles_base2.raw
image: /images/sles11_base2.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 2.8G

The new image is 0.4 gigabytes bigger than the original base image. It uses no backing le, and
you can easily create new derived images based upon it. This lets you create a sophisticated
hierarchy of virtual disk images for your organization, saving a lot of time and work.

27.2.4.4 Mounting an Image on a VM Host Server

It can be useful to mount a virtual disk image under the host system. It is strongly recommended
to read Chapter 16, libguestfs and use dedicated tools to access a virtual machine image. However,
if you need to do this manually, follow this guide.

242 Manipulate Disk Images Effectively openSUSE Leap 15.0

Linux systems can mount an internal partition of a raw disk image using a loopback device.
The rst example procedure is more complex but more illustrative, while the second one is
straightforward:

PROCEDURE 27.1: MOUNTING DISK IMAGE BY CALCULATING PARTITION OFFSET

1. Set a loop device on the disk image whose partition you want to mount.

tux > losetup /dev/loop0 /images/sles_base.raw

2. Find the sector size and the starting sector number of the partition you want to mount.

tux > fdisk -lu /dev/loop0

Disk /dev/loop0: 4294 MB, 4294967296 bytes
255 heads, 63 sectors/track, 522 cylinders, total 8388608 sectors
Units = sectors of 1 * 512 = 512 1 bytes
Disk identifier: 0x000ceca8

 Device Boot Start End Blocks Id System
/dev/loop0p1 63 1542239 771088+ 82 Linux swap
/dev/loop0p2 * 1542240 2 8385929 3421845 83 Linux

1 The disk sector size.

2 The starting sector of the partition.

3. Calculate the partition start offset:
sector_size * sector_start = 512 * 1542240 = 789626880

4. Delete the loop and mount the partition inside the disk image with the calculated offset
on a prepared directory.

tux > losetup -d /dev/loop0
tux > mount -o loop,offset=789626880 \
/images/sles_base.raw /mnt/sles/
tux > ls -l /mnt/sles/
total 112
drwxr-xr-x 2 root root 4096 Nov 16 10:02 bin
drwxr-xr-x 3 root root 4096 Nov 16 10:27 boot
drwxr-xr-x 5 root root 4096 Nov 16 09:11 dev
[...]
drwxrwxrwt 14 root root 4096 Nov 24 09:50 tmp
drwxr-xr-x 12 root root 4096 Nov 16 09:16 usr
drwxr-xr-x 15 root root 4096 Nov 16 09:22 var

243 Manipulate Disk Images Effectively openSUSE Leap 15.0

5. Copy one or more les onto the mounted partition and unmount it when finished.

tux > cp /etc/X11/xorg.conf /mnt/sles/root/tmp
tux > ls -l /mnt/sles/root/tmp
tux > umount /mnt/sles/

Warning: Do not Write to Images Currently in Use
Never mount a partition of an image of a running virtual machine in a read-write mode.
This could corrupt the partition and break the whole VM Guest.

244 Manipulate Disk Images Effectively openSUSE Leap 15.0

28 Running Virtual Machines with qemu-sys-
tem-ARCH

Once you have a virtual disk image ready (for more information on disk images, see Section 27.2,

“Managing Disk Images with qemu-img”), it is time to start the related virtual machine. Section 27.1,

“Basic Installation with qemu-system-ARCH” introduced simple commands to install and run a VM
Guest. This chapter focuses on a more detailed explanation of qemu-system-ARCH usage, and
shows solutions for more specific tasks. For a complete list of qemu-system-ARCH 's options, see
its manual page (man 1 qemu).

28.1 Basic qemu-system-ARCH Invocation
The qemu-system-ARCH command uses the following syntax:

qemu-system-ARCH options 1 disk_img 2

1 qemu-system-ARCH understands many options. Most of them define parameters of the
emulated hardware, while others affect more general emulator behavior. If you do not
supply any options, default values are used, and you need to supply the path to a disk
image to be run.

2 Path to the disk image holding the guest system you want to virtualize. qemu-system-ARCH
supports many image formats. Use qemu-img --help to list them. If you do not supply the
path to a disk image as a separate argument, you need to use the -drive file= option.

28.2 General qemu-system-ARCH Options
This section introduces general qemu-system-ARCH options and options related to the basic
emulated hardware, such as the virtual machine's processor, memory, model type, or time pro-
cessing methods.

-name NAME_OF_GUEST

Specifies the name of the running guest system. The name is displayed in the window
caption and used for the VNC server.

-boot OPTIONS

245 Basic qemu-system-ARCH Invocation openSUSE Leap 15.0

Specifies the order in which the defined drives will be booted. Drives are represented by
letters, where a and b stand for the floppy drives 1 and 2, c stands for the rst hard disk,
d stands for the rst CD-ROM drive, and n to p stand for Ether-boot network adapters.
For example, qemu-system-ARCH [...] -boot order=ndc rst tries to boot from net-
work, then from the rst CD-ROM drive, and finally from the rst hard disk.

-pidfile FILENAME

Stores the QEMU's process identification number (PID) in a le. This is useful if you run
QEMU from a script.

-nodefaults

By default QEMU creates basic virtual devices even if you do not specify them on the
command line. This option turns this feature o, and you must specify every single device
manually, including graphical and network cards, parallel or serial ports, or virtual con-
soles. Even QEMU monitor is not attached by default.

-daemonize

“Daemonizes” the QEMU process after it is started. QEMU will detach from the standard
input and standard output after it is ready to receive connections on any of its devices.

Note: SeaBIOS BIOS Implementation
SeaBIOS is the default BIOS used. You can boot USB devices, any drive (CD-ROM, Flop-
py, or a hard disk). It has USB mouse and keyboard support and supports multiple
VGA cards. For more information about SeaBIOS, refer to the SeaBIOS Website (http://

www.seabios.org/SeaBIOS) .

28.2.1 Basic Virtual Hardware

28.2.1.1 Machine Type

You can specifies the type of the emulated machine. Run qemu-system-ARCH -M help to view
a list of supported machine types.

Note: ISA-PC
The machine type isapc: ISA-only-PC is unsupported.

246 Basic Virtual Hardware openSUSE Leap 15.0

http://www.seabios.org/SeaBIOS
http://www.seabios.org/SeaBIOS

28.2.1.2 CPU Model

To specify the type of the processor (CPU) model, run qemu-system-ARCH -cpu MODEL . Use
qemu-system-ARCH -cpu help to view a list of supported CPU models.

CPU ags information can be found at CPUID Wikipedia (http://en.wikipedia.org/wiki/CPUID) .

28.2.1.3 Other Basics Options

The following is a list of most commonly used options while launching qemu from command
line. To see all options available refer to qemu-doc man page.

-m MEGABYTES

Specifies how many megabytes are used for the virtual RAM size.

-balloon virtio

Specifies a paravirtualized device to dynamically change the amount of virtual RAM mem-
ory assigned to VM Guest. The top limit is the amount of memory specified with -m .

-smp NUMBER_OF_CPUS

Specifies how many CPUs will be emulated. QEMU supports up to 255 CPUs on the PC
platform (up to 64 with KVM acceleration used). This option also takes other CPU-related
parameters, such as number of sockets, number of cores per socket, or number of threads
per core.

The following is an example of a working qemu-system-ARCH command line:

tux > qemu-system-x86_64 -name "SLES 12 SP2" -M pc-i440fx-2.7 -m 512 \
-machine accel=kvm -cpu kvm64 -smp 2 -drive /images/sles.raw

247 Basic Virtual Hardware openSUSE Leap 15.0

http://en.wikipedia.org/wiki/CPUID

FIGURE 28.1: QEMU WINDOW WITH SLES 11 SP3 AS VM GUEST

-no-acpi

Disables ACPI support.

-S

QEMU starts with CPU stopped. To start CPU, enter c in QEMU monitor. For more infor-
mation, see Chapter 29, Virtual Machine Administration Using QEMU Monitor.

28.2.2 Storing and Reading Configuration of Virtual Devices

-readconfig CFG_FILE

Instead of entering the devices configuration options on the command line each time you
want to run VM Guest, qemu-system-ARCH can read it from a le that was either previ-
ously saved with -writeconfig or edited manually.

-writeconfig CFG_FILE

Dumps the current virtual machine's devices configuration to a text le. It can be conse-
quently re-used with the -readconfig option.

tux > qemu-system-x86_64 -name "SLES 12 SP2" -machine accel=kvm -M pc-i440fx-2.7 -m
 512 -cpu kvm64 \
-smp 2 /images/sles.raw -writeconfig /images/sles.cfg
(exited)
tux > cat /images/sles.cfg
qemu config file

248 Storing and Reading Configuration of Virtual Devices openSUSE Leap 15.0

[drive]
 index = "0"
 media = "disk"
 file = "/images/sles_base.raw"

This way you can effectively manage the configuration of your virtual machines' devices
in a well-arranged way.

28.2.3 Guest Real-Time Clock

-rtc OPTIONS

Specifies the way the RTC is handled inside a VM Guest. By default, the clock of the guest
is derived from that of the host system. Therefore, it is recommended that the host system
clock is synchronized with an accurate external clock (for example, via NTP service).
If you need to isolate the VM Guest clock from the host one, specify clock=vm instead
of the default clock=host .
You can also specify the initial time of the VM Guest's clock with the base option:

tux > qemu-system-x86_64 [...] -rtc clock=vm,base=2010-12-03T01:02:00

Instead of a time stamp, you can specify utc or localtime . The former instructs VM
Guest to start at the current UTC value (Coordinated Universal Time, see http://en.wikipedi-

a.org/wiki/UTC), while the latter applies the local time setting.

28.3 Using Devices in QEMU
QEMU virtual machines emulate all devices needed to run a VM Guest. QEMU supports, for ex-
ample, several types of network cards, block devices (hard and removable drives), USB devices,
character devices (serial and parallel ports), or multimedia devices (graphic and sound cards).
This section introduces options to configure various types of supported devices.

Tip
If your device, such as -drive , needs a special driver and driver properties to be set,
specify them with the -device option, and identify with drive= suboption. For exam-
ple:

tux > sudo qemu-system-x86_64 [...] -drive if=none,id=drive0,format=raw \

249 Guest Real-Time Clock openSUSE Leap 15.0

http://en.wikipedia.org/wiki/UTC
http://en.wikipedia.org/wiki/UTC

-device virtio-blk-pci,drive=drive0,scsi=off ...

To get help on available drivers and their properties, use -device ? and -device
DRIVER,? .

28.3.1 Block Devices

Block devices are vital for virtual machines. In general, these are xed or removable storage
media usually called drives. One of the connected hard disks typically holds the guest operating
system to be virtualized.

Virtual Machine drives are defined with -drive . This option has many sub-options, some of
which are described in this section. For the complete list, see the manual page (man 1 qemu).

SUB-OPTIONS FOR THE -drive OPTION

file=image_fname

Specifies the path to the disk image that will be used with this drive. If not specified, an
empty (removable) drive is assumed.

if=drive_interface

Specifies the type of interface to which the drive is connected. Currently only floppy ,
scsi , ide , or virtio are supported by SUSE. virtio defines a paravirtualized disk
driver. Default is ide .

index=index_of_connector

Specifies the index number of a connector on the disk interface (see the if option) where
the drive is connected. If not specified, the index is automatically incremented.

media=type

Specifies the type of media. Can be disk for hard disks, or cdrom for removable CD-
ROM drives.

format=img_fmt

Specifies the format of the connected disk image. If not specified, the format is autodetect-
ed. Currently, SUSE supports raw , and qcow2 formats.

cache=method

250 Block Devices openSUSE Leap 15.0

Specifies the caching method for the drive. Possible values are unsafe , writethrough ,
writeback , directsync , or none . To improve performance when using the qcow2 im-
age format, select writeback . none disables the host page cache and, therefore, is the
safest option. Default for image les is writeback . For more information, see Chapter 14,

Disk Cache Modes.

Tip
To simplify defining block devices, QEMU understands several shortcuts which you may
nd handy when entering the qemu-system-ARCH command line.

You can use

tux > sudo qemu-system-x86_64 -cdrom /images/cdrom.iso

instead of

tux > sudo qemu-system-x86_64 -drive file=/images/cdrom.iso,index=2,media=cdrom

and

tux > sudo qemu-system-x86_64 -hda /images/imagei1.raw -hdb /images/image2.raw -hdc
 \
/images/image3.raw -hdd /images/image4.raw

instead of

tux > sudo qemu-system-x86_64 -drive file=/images/image1.raw,index=0,media=disk \
-drive file=/images/image2.raw,index=1,media=disk \
-drive file=/images/image3.raw,index=2,media=disk \
-drive file=/images/image4.raw,index=3,media=disk

Tip: Using Host Drives Instead of Images
As an alternative to using disk images (see Section 27.2, “Managing Disk Images with qe-
mu-img”) you can also use existing VM Host Server disks, connect them as drives, and
access them from VM Guest. Use the host disk device directly instead of disk image le
names.

To access the host CD-ROM drive, use

251 Block Devices openSUSE Leap 15.0

tux > sudo qemu-system-x86_64 [...] -drive file=/dev/cdrom,media=cdrom

To access the host hard disk, use

tux > sudo qemu-system-x86_64 [...] -drive file=/dev/hdb,media=disk

A host drive used by a VM Guest must not be accessed concurrently by the VM Host
Server or another VM Guest.

28.3.1.1 Freeing Unused Guest Disk Space

A Sparse image file is a type of disk image le that grows in size as the user adds data to it, taking
up only as much disk space as is stored in it. For example, if you copy 1 GB of data inside the
sparse disk image, its size grows by 1 GB. If you then delete for example 500 MB of the data,
the image size does not by default decrease as expected.

That is why the discard=on option is introduced on the KVM command line. It tells the hy-
pervisor to automatically free the “holes” after deleting data from the sparse guest image. Note
that this option is valid only for the if=scsi drive interface:

tux > sudo qemu-system-x86_64 [...] -drive file=/path/to/file.img,if=scsi,discard=on

Important: Support Status
if=scsi is not supported. This interface does not map to virtio-scsi, but rather to the lsi
SCSI adapter.

28.3.1.2 IOThreads

IOThreads are dedicated event loop threads for virtio devices to perform I/O requests in order to
improve scalability, especially on an SMP VM Host Server with SMP VM Guests using many disk
devices. Instead of using QEMU's main event loop for I/O processing, IOThreads allow spreading
I/O work across multiple CPUs and can improve latency when properly configured.

IOThreads are enabled by defining IOThread objects. virtio devices can then use the objects for
their I/0 event loops. Many virtio devices can use a single IOThread object, or virtio devices and
IOThread objects can be configured in a 1:1 mapping. The following example creates a single
IOThread with ID iothread0 which is then used as the event loop for two virtio-blk devices.

252 Block Devices openSUSE Leap 15.0

tux > qemu-system-x86_64 [...] -object iothread,id=iothread0\
-drive if=none,id=drive0,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive0,scsi=off,\
iothread=iothread0 -drive if=none,id=drive1,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive1,scsi=off,\
iothread=iothread0 [...]

The following qemu command line example illustrates a 1:1 virtio device to IOThread mapping:

tux > qemu-system-x86_64 [...] -object iothread,id=iothread0\
-object iothread,id=iothread1 -drive if=none,id=drive0,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive0,scsi=off,\
iothread=iothread0 -drive if=none,id=drive1,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive1,scsi=off,\
 iothread=iothread1 [...]

28.3.1.3 Bio-Based I/O Path for virtio-blk

For better performance of I/O-intensive applications, a new I/O path was introduced for the
virtio-blk interface in kernel version 3.7. This bio-based block device driver skips the I/O sched-
uler, and thus shortens the I/O path in guest and has lower latency. It is especially useful for
high-speed storage devices, such as SSD disks.

The driver is disabled by default. To use it, do the following:

1. Append virtio_blk.use_bio=1 to the kernel command line on the guest. You can do
so via YaST System Boot Loader.
You can do it also by editing /etc/default/grub , searching for the line that contains
GRUB_CMDLINE_LINUX_DEFAULT= , and adding the kernel parameter at the end. Then run
grub2-mkconfig >/boot/grub2/grub.cfg to update the grub2 boot menu.

2. Reboot the guest with the new kernel command line active.

Tip: Bio-Based Driver on Slow Devices
The bio-based virtio-blk driver does not help on slow devices such as spin hard disks. The
reason is that the benefit of scheduling is larger than what the shortened bio path offers.
Do not use the bio-based driver on slow devices.

253 Block Devices openSUSE Leap 15.0

28.3.1.4 Accessing iSCSI Resources Directly

QEMU now integrates with libiscsi . This allows QEMU to access iSCSI resources directly
and use them as virtual machine block devices. This feature does not require any host iSCSI
initiator configuration, as is needed for a libvirt iSCSI target based storage pool setup. Instead
it directly connects guest storage interfaces to an iSCSI target LUN by means of the user space
library libiscsi. iSCSI-based disk devices can also be specified in the libvirt XML configuration.

Note: RAW Image Format
This feature is only available using the RAW image format, as the iSCSI protocol has some
technical limitations.

The following is the QEMU command line interface for iSCSI connectivity.

Note: virt-manager Limitation
The use of libiscsi based storage provisioning is not yet exposed by the virt-manager
interface, but instead it would be configured by directly editing the guest xml. This new
way of accessing iSCSI based storage is to be done at the command line.

tux > sudo qemu-system-x86_64 -machine accel=kvm \
 -drive file=iscsi://192.168.100.1:3260/iqn.2016-08.com.example:314605ab-a88e-49af-
b4eb-664808a3443b/0,\
 format=raw,if=none,id=mydrive,cache=none \
 -device ide-hd,bus=ide.0,unit=0,drive=mydrive ...

Here is an example snippet of guest domain xml which uses the protocol based iSCSI:

<devices>
...
 <disk type='network' device='disk'>
 <driver name='qemu' type='raw'/>
 <source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-nopool/2'>
 <host name='example.com' port='3260'/>
 </source>
 <auth username='myuser'>
 <secret type='iscsi' usage='libvirtiscsi'/>
 </auth>
 <target dev='vda' bus='virtio'/>
 </disk>

254 Block Devices openSUSE Leap 15.0

</devices>

Contrast that with an example which uses the host based iSCSI initiator which virt-manager
sets up:

<devices>
...
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw' cache='none' io='native'/>
 <source dev='/dev/disk/by-path/scsi-0:0:0:0'/>
 <target dev='hda' bus='ide'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
 </disk>
 <controller type='ide' index='0'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01'
 function='0x1'/>
 </controller>
</devices>

28.3.1.5 Using RADOS Block Devices with QEMU

RADOS Block Devices (RBD) store data in a Ceph cluster. They allow snapshotting, replication,
and data consistency. You can use an RBD from your KVM-managed VM Guests similarly to how
you use other block devices.

28.3.2 Graphic Devices and Display Options

This section describes QEMU options affecting the type of the emulated video card and the way
VM Guest graphical output is displayed.

28.3.2.1 Defining Video Cards

QEMU uses -vga to define a video card used to display VM Guest graphical output. The -vga
option understands the following values:

none

Disables video cards on VM Guest (no video card is emulated). You can still access the
running VM Guest via the serial console.

std

255 Graphic Devices and Display Options openSUSE Leap 15.0

Emulates a standard VESA 2.0 VBE video card. Use it if you intend to use high display
resolution on VM Guest.

cirrus

Emulates Cirrus Logic GD5446 video card. Good choice if you insist on high compatibility
of the emulated video hardware. Most operating systems (even Windows 95) recognize
this type of card.

Tip
For best video performance with the cirrus type, use 16-bit color depth both on
VM Guest and VM Host Server.

28.3.2.2 Display Options

The following options affect the way VM Guest graphical output is displayed.

-display gtk

Display video output in a GTK window. This interface provides UI elements to configure
and control the VM during runtime.

-display sdl

Display video output via SDL, usually in a separate graphics window. For more informa-
tion, see the SDL documentation.

-spice option[,option[,...]]

Enables the spice remote desktop protocol.

-display vnc

Refer to Section 28.5, “Viewing a VM Guest with VNC” for more information.

-nographic

Disables QEMU's graphical output. The emulated serial port is redirected to the console.
After starting the virtual machine with -nographic , press Ctrl – A H in the virtual
console to view the list of other useful shortcuts, for example, to toggle between the console
and the QEMU monitor.

tux > qemu-system-x86_64 -hda /images/sles_base.raw -nographic

C-a h print this help
C-a x exit emulator

256 Graphic Devices and Display Options openSUSE Leap 15.0

C-a s save disk data back to file (if -snapshot)
C-a t toggle console timestamps
C-a b send break (magic sysrq)
C-a c switch between console and monitor
C-a C-a sends C-a
(pressed C-a c)

QEMU 2.3.1 monitor - type 'help' for more information
(qemu)

-no-frame

Disables decorations for the QEMU window. Convenient for dedicated desktop work space.

-full-screen

Starts QEMU graphical output in full screen mode.

-no-quit

Disables the close button of the QEMU window and prevents it from being closed by force.

-alt-grab , -ctrl-grab

By default, the QEMU window releases the “captured” mouse after pressing Ctrl – Alt .
You can change the key combination to either Ctrl – Alt – Shift (-alt-grab), or the
right Ctrl key (-ctrl-grab).

28.3.3 USB Devices

There are two ways to create USB devices usable by the VM Guest in KVM: you can either
emulate new USB devices inside a VM Guest, or assign an existing host USB device to a VM
Guest. To use USB devices in QEMU you rst need to enable the generic USB driver with the -
usb option. Then you can specify individual devices with the -usbdevice option.

28.3.3.1 Emulating USB Devices in VM Guest

SUSE currently supports the following types of USB devices: disk , host , serial , braille ,
net , mouse , and tablet .

TYPES OF USB DEVICES FOR THE -usbdevice OPTION

disk

Emulates a mass storage device based on le. The optional format option is used rather
than detecting the format.

257 USB Devices openSUSE Leap 15.0

tux > qemu-system-x86_64 [...] -usbdevice
 disk:format=raw:/virt/usb_disk.raw

host

Pass through the host device (identified by bus.addr).

serial

Serial converter to a host character device.

braille

Emulates a braille device using BrlAPI to display the braille output.

net

Emulates a network adapter that supports CDC Ethernet and RNDIS protocols.

mouse

Emulates a virtual USB mouse. This option overrides the default PS/2 mouse emulation.
The following example shows the hardware status of a mouse on VM Guest started with
qemu-system-ARCH [...] -usbdevice mouse :

tux > sudo hwinfo --mouse
20: USB 00.0: 10503 USB Mouse
[Created at usb.122]
UDI: /org/freedesktop/Hal/devices/usb_device_627_1_1_if0
[...]
Hardware Class: mouse
Model: "Adomax QEMU USB Mouse"
Hotplug: USB
Vendor: usb 0x0627 "Adomax Technology Co., Ltd"
Device: usb 0x0001 "QEMU USB Mouse"
[...]

tablet

Emulates a pointer device that uses absolute coordinates (such as touchscreen). This option
overrides the default PS/2 mouse emulation. The tablet device is useful if you are viewing
VM Guest via the VNC protocol. See Section 28.5, “Viewing a VM Guest with VNC” for more
information.

28.3.4 Character Devices

Use -chardev to create a new character device. The option uses the following general syntax:

qemu-system-x86_64 [...] -chardev BACKEND_TYPE,id=ID_STRING

258 Character Devices openSUSE Leap 15.0

where BACKEND_TYPE can be one of null , socket , udp , msmouse , vc , file , pipe , con-
sole , serial , pty , stdio , braille , tty , or parport . All character devices must have a
unique identification string up to 127 characters long. It is used to identify the device in other
related directives. For the complete description of all back-end's sub-options, see the manual
page (man 1 qemu). A brief description of the available back-ends follows:

null

Creates an empty device that outputs no data and drops any data it receives.

stdio

Connects to QEMU's process standard input and standard output.

socket

Creates a two-way stream socket. If PATH is specified, a Unix socket is created:

tux > sudo qemu-system-x86_64 [...] -chardev \
socket,id=unix_socket1,path=/tmp/unix_socket1,server

The SERVER suboption specifies that the socket is a listening socket.
If PORT is specified, a TCP socket is created:

tux > sudo qemu-system-x86_64 [...] -chardev \
socket,id=tcp_socket1,host=localhost,port=7777,server,nowait

The command creates a local listening (server) TCP socket on port 7777. QEMU will not
block waiting for a client to connect to the listening port (nowait).

udp

Sends all network traffic from VM Guest to a remote host over the UDP protocol.

tux > sudo qemu-system-x86_64 [...] \
-chardev udp,id=udp_fwd,host=mercury.example.com,port=7777

The command binds port 7777 on the remote host mercury.example.com and sends VM
Guest network traffic there.

vc

Creates a new QEMU text console. You can optionally specify the dimensions of the virtual
console:

tux > sudo qemu-system-x86_64 [...] -chardev vc,id=vc1,width=640,height=480 \

259 Character Devices openSUSE Leap 15.0

-mon chardev=vc1

The command creates a new virtual console called vc1 of the specified size, and connects
the QEMU monitor to it.

file

Logs all traffic from VM Guest to a le on VM Host Server. The path is required and will
be created if it does not exist.

tux > sudo qemu-system-x86_64 [...] \
-chardev file,id=qemu_log1,path=/var/log/qemu/guest1.log

By default QEMU creates a set of character devices for serial and parallel ports, and a special
console for QEMU monitor. However, you can create your own character devices and use them
for the mentioned purposes. The following options will help you:

-serial CHAR_DEV

Redirects the VM Guest's virtual serial port to a character device CHAR_DEV on VM Host
Server. By default, it is a virtual console (vc) in graphical mode, and stdio in non-
graphical mode. The -serial understands many sub-options. See the manual page man
1 qemu for a complete list of them.
You can emulate up to 4 serial ports. Use -serial none to disable all serial ports.

-parallel DEVICE

Redirects the VM Guest's parallel port to a DEVICE . This option supports the same devices
as -serial .

Tip
With openSUSE Leap as a VM Host Server, you can directly use the hardware parallel
port devices /dev/parportN where N is the number of the port.

You can emulate up to 3 parallel ports. Use -parallel none to disable all parallel ports.

-monitor CHAR_DEV

Redirects the QEMU monitor to a character device CHAR_DEV on VM Host Server. This
option supports the same devices as -serial . By default, it is a virtual console (vc) in a
graphical mode, and stdio in non-graphical mode.

For a complete list of available character devices back-ends, see the man page (man 1 qemu).

260 Character Devices openSUSE Leap 15.0

28.4 Networking in QEMU
Use the -netdev option in combination with -device to define a specific type of networking
and a network interface card for your VM Guest. The syntax for the -netdev option is

-netdev type[,prop[=value][,...]]

Currently, SUSE supports the following network types: user , bridge , and tap . For a complete
list of -netdev sub-options, see the manual page (man 1 qemu).

SUPPORTED -netdev SUB-OPTIONS

bridge

Uses a specified network helper to configure the TAP interface and attach it to a specified
bridge. For more information, see Section 28.4.3, “Bridged Networking”.

user

Specifies user-mode networking. For more information, see Section 28.4.2, “User-Mode Net-

working”.

tap

Specifies bridged or routed networking. For more information, see Section 28.4.3, “Bridged

Networking”.

28.4.1 Defining a Network Interface Card

Use -netdev together with the related -device option to add a new emulated network card:

tux > sudo qemu-system-x86_64 [...] \
-netdev tap 1 ,id=hostnet0 \
-device virtio-net-pci 2 ,netdev=hostnet0,vlan=1 3 ,\
macaddr=00:16:35:AF:94:4B 4 ,name=ncard1

1 Specifies the network device type.

2 Specifies the model of the network card. Use qemu-system-ARCH -device help and
search for the Network devices: section to get the list of all network card models sup-
ported by QEMU on your platform.
Currently, SUSE supports the models rtl8139 , e1000 and its variants e1000-82540em ,
e1000-82544gc and e1000-82545em , and virtio-net-pci . To view a list of options for
a specific driver, add help as a driver option:

tux > sudo qemu-system-x86_64 -device e1000,help

261 Networking in QEMU openSUSE Leap 15.0

e1000.mac=macaddr
e1000.vlan=vlan
e1000.netdev=netdev
e1000.bootindex=int32
e1000.autonegotiation=on/off
e1000.mitigation=on/off
e1000.addr=pci-devfn
e1000.romfile=str
e1000.rombar=uint32
e1000.multifunction=on/off
e1000.command_serr_enable=on/off

3 Connects the network interface to VLAN number 1. You can specify your own number—
it is mainly useful for identification purpose. If you omit this suboption, QEMU uses the
default 0.

4 Specifies the Media Access Control (MAC) address for the network card. It is a unique
identifier and you are advised to always specify it. If not, QEMU supplies its own default
MAC address and creates a possible MAC address conflict within the related VLAN.

28.4.2 User-Mode Networking

The -netdev user option instructs QEMU to use user-mode networking. This is the default if
no networking mode is selected. Therefore, these command lines are equivalent:

tux > sudo qemu-system-x86_64 -hda /images/sles_base.raw

tux > sudo qemu-system-x86_64 -hda /images/sles_base.raw -netdev user,id=hostnet0

This mode is useful if you want to allow the VM Guest to access the external network resources,
such as the Internet. By default, no incoming traffic is permitted and therefore, the VM Guest is
not visible to other machines on the network. No administrator privileges are required in this
networking mode. The user-mode is also useful for doing a network boot on your VM Guest
from a local directory on VM Host Server.

The VM Guest allocates an IP address from a virtual DHCP server. VM Host Server (the DHCP
server) is reachable at 10.0.2.2, while the IP address range for allocation starts from 10.0.2.15.
You can use ssh to connect to VM Host Server at 10.0.2.2, and scp to copy les back and forth.

28.4.2.1 Command Line Examples

This section shows several examples on how to set up user-mode networking with QEMU.

262 User-Mode Networking openSUSE Leap 15.0

EXAMPLE 28.1: RESTRICTED USER-MODE NETWORKING

tux > sudo qemu-system-x86_64 [...] \
-netdev user 1 ,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,vlan=1 2 ,name=user_net1 3 ,restrict=yes 4

1 Specifies user-mode networking.

2 Connects to VLAN number 1. If omitted, defaults to 0.

3 Specifies a human-readable name of the network stack. Useful when identifying it in the
QEMU monitor.

4 Isolates VM Guest. It then cannot communicate with VM Host Server and no network pack-
ets will be routed to the external network.

EXAMPLE 28.2: USER-MODE NETWORKING WITH CUSTOM IP RANGE

tux > sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,net=10.2.0.0/8 1 ,host=10.2.0.6 2 ,\
dhcpstart=10.2.0.20 3 ,hostname=tux_kvm_guest 4

1 Specifies the IP address of the network that VM Guest sees and optionally the netmask.
Default is 10.0.2.0/8.

2 Specifies the VM Host Server IP address that VM Guest sees. Default is 10.0.2.2.

3 Specifies the rst of the 16 IP addresses that the built-in DHCP server can assign to VM
Guest. Default is 10.0.2.15.

4 Specifies the host name that the built-in DHCP server will assign to VM Guest.

EXAMPLE 28.3: USER-MODE NETWORKING WITH NETWORK-BOOT AND TFTP

tux > sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,tftp=/images/tftp_dir 1 ,\
bootfile=/images/boot/pxelinux.0 2

1 Activates a built-in TFTP (a le transfer protocol with the functionality of a very basic FTP)
server. The les in the specified directory will be visible to a VM Guest as the root of a
TFTP server.

2 Broadcasts the specified le as a BOOTP (a network protocol that offers an IP address and
a network location of a boot image, often used in diskless workstations) le. When used
together with tftp , the VM Guest can boot from network from the local directory on the
host.

263 User-Mode Networking openSUSE Leap 15.0

EXAMPLE 28.4: USER-MODE NETWORKING WITH HOST PORT FORWARDING

tux > sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,hostfwd=tcp::2222-:22

Forwards incoming TCP connections to the port 2222 on the host to the port 22 (SSH) on
VM Guest. If sshd is running on VM Guest, enter

tux > ssh qemu_host -p 2222

where qemu_host is the host name or IP address of the host system, to get a SSH prompt
from VM Guest.

28.4.3 Bridged Networking

With the -netdev tap option, QEMU creates a network bridge by connecting the host TAP
network device to a specified VLAN of VM Guest. Its network interface is then visible to the rest
of the network. This method does not work by default and needs to be explicitly specified.

First, create a network bridge and add a VM Host Server physical network interface (usually
eth0) to it:

1. Start YaST Control Center and select System Network Settings.

2. Click Add and select Bridge from the Device Type drop-down box in the Hardware Dialog
window. Click Next.

3. Choose whether you need a dynamically or statically assigned IP address, and ll the
related network settings if applicable.

4. In the Bridged Devices pane, select the Ethernet device to add to the bridge.
Click Next. When asked about adapting an already configured device, click Continue.

5. Click OK to apply the changes. Check if the bridge is created:

tux > bridge link
2: eth0 state UP : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 \
 state forwarding priority 32 cost 100

264 Bridged Networking openSUSE Leap 15.0

28.4.3.1 Connecting to a Bridge Manually

Use the following example script to connect VM Guest to the newly created bridge interface
br0 . Several commands in the script are run via the sudo mechanism because they require
root privileges.

Tip: Required Software
To manage a network bridge, you need to have the tunctl package installed.

#!/bin/bash
bridge=br0 1

tap=$(sudo tunctl -u $(whoami) -b) 2

sudo ip link set $tap up 3

sleep 1s 4

sudo ip link add name $bridge type bridge
sudo ip link set $bridge up
sudo ip link set $tap master $bridge 5

qemu-system-x86_64 -machine accel=kvm -m 512 -hda /images/sles_base.raw \
 -netdev tap,id=hostnet0 \
 -device virtio-net-pci,netdev=hostnet0,vlan=0,macaddr=00:16:35:AF:94:4B,\
 ifname=$tap 6 ,script=no 7 ,downscript=no
sudo ip link set $tap nomaster 8

sudo ip link set $tap down 9

sudo tunctl -d $tap 10

1 Name of the bridge device.

2 Prepare a new TAP device and assign it to the user who runs the script. TAP devices are
virtual network devices often used for virtualization and emulation setups.

3 Bring up the newly created TAP network interface.

4 Make a 1-second pause to make sure the new TAP network interface is really up.

5 Add the new TAP device to the network bridge br0 .

6 The ifname= suboption specifies the name of the TAP network interface used for bridging.

7 Before qemu-system-ARCH connects to a network bridge, it checks the script and down-
script values. If it nds the specified scripts on the VM Host Server le system, it runs
the script before it connects to the network bridge and downscript after it exits the
network environment. You can use these scripts to set up and tear down the bridged inter-

265 Bridged Networking openSUSE Leap 15.0

faces. By default, /etc/qemu-ifup and /etc/qemu-ifdown are examined. If script=no
and downscript=no are specified, the script execution is disabled and you need to take
care of it manually.

8 Deletes the TAP interface from a network bridge br0 .

9 Sets the state of the TAP device to down .

10 Tear down the TAP device.

28.4.3.2 Connecting to a Bridge with qemu-bridge-helper

Another way to connect VM Guest to a network through a network bridge is by means of the
qemu-bridge-helper helper program. It configures the TAP interface for you, and attaches it
to the specified bridge. The default helper executable is /usr/lib/qemu-bridge-helper . The
helper executable is setuid root, which is only executable by the members of the virtualization
group (kvm). Therefore the qemu-system-ARCH command itself does not need to be run under
root privileges.

The helper is automatically called when you specify a network bridge:

qemu-system-x86_64 [...] \
 -netdev bridge,id=hostnet0,vlan=0,br=br0 \
 -device virtio-net-pci,netdev=hostnet0

You can specify your own custom helper script that will take care of the TAP device (de)config-
uration, with the helper=/path/to/your/helper option:

qemu-system-x86_64 [...] \
 -netdev bridge,id=hostnet0,vlan=0,br=br0,helper=/path/to/bridge-helper \
 -device virtio-net-pci,netdev=hostnet0

Tip
To define access privileges to qemu-bridge-helper , inspect the /etc/qe-

mu/bridge.conf le. For example the following directive

allow br0

allows the qemu-system-ARCH command to connect its VM Guest to the network bridge
br0 .

266 Bridged Networking openSUSE Leap 15.0

28.5 Viewing a VM Guest with VNC
By default QEMU uses a GTK (a cross-platform toolkit library) window to display the graphical
output of a VM Guest. With the -vnc option specified, you can make QEMU listen on a specified
VNC display and redirect its graphical output to the VNC session.

Tip
When working with QEMU's virtual machine via VNC session, it is useful to work with
the -usbdevice tablet option.

Moreover, if you need to use another keyboard layout than the default en-us , specify
it with the -k option.

The rst suboption of -vnc must be a display value. The -vnc option understands the following
display specifications:

host:display

Only connections from host on the display number display will be accepted. The TCP
port on which the VNC session is then running is normally a 5900 + display number. If
you do not specify host , connections will be accepted from any host.

unix:path

The VNC server listens for connections on Unix domain sockets. The path option specifies
the location of the related Unix socket.

none

The VNC server functionality is initialized, but the server itself is not started. You can start
the VNC server later with the QEMU monitor. For more information, see Chapter 29, Virtual

Machine Administration Using QEMU Monitor.

Following the display value there may be one or more option ags separated by commas. Valid
options are:

reverse

Connect to a listening VNC client via a reverse connection.

websocket

Opens an additional TCP listening port dedicated to VNC Websocket connections. By def-
inition the Websocket port is 5700+display.

267 Viewing a VM Guest with VNC openSUSE Leap 15.0

password

Require that password-based authentication is used for client connections.

tls

Require that clients use TLS when communicating with the VNC server.

x509=/path/to/certificate/dir

Valid if TLS is specified. Require that x509 credentials are used for negotiating the TLS
session.

x509verify=/path/to/certificate/dir

Valid if TLS is specified. Require that x509 credentials are used for negotiating the TLS
session.

sasl

Require that the client uses SASL to authenticate with the VNC server.

acl

Turn on access control lists for checking of the x509 client certificate and SASL party.

lossy

Enable lossy compression methods (gradient, JPEG, ...).

non-adaptive

Disable adaptive encodings. Adaptive encodings are enabled by default.

share=[allow-exclusive|force-shared|ignore]

Set display sharing policy.

Note
For more details about the display options, see the qemu-doc man page.

An example VNC usage:

tux > qemu-system-x86_64 [...] -vnc :5
(on the client:)
wilber > vncviewer venus:5 &

268 Viewing a VM Guest with VNC openSUSE Leap 15.0

FIGURE 28.2: QEMU VNC SESSION

28.5.1 Secure VNC Connections

The default VNC server setup does not use any form of authentication. In the previous example,
any user can connect and view the QEMU VNC session from any host on the network.

There are several levels of security that you can apply to your VNC client/server connection.
You can either protect your connection with a password, use x509 certificates, use SASL authen-
tication, or even combine some authentication methods in one QEMU command.

See Section A.1, “Generating x509 Client/Server Certificates” for more information about the x509
certificates generation. For more information about configuring x509 certificates on a VM Host
Server and the client, see Section 10.3.2, “Remote TLS/SSL Connection with x509 Certificate (qemu+tls

or xen+tls)” and Section 10.3.2.3, “Configuring the Client and Testing the Setup”.

The Remmina VNC viewer supports advanced authentication mechanisms. Therefore, it will be
used to view the graphical output of VM Guest in the following examples. For this example,
let us assume that the server x509 certificates ca-cert.pem , server-cert.pem , and serv-
er-key.pem are located in the /etc/pki/qemu directory on the host. The client certificates can
be placed in any custom directory, as Remmina asks for their path on the connection start-up.

269 Secure VNC Connections openSUSE Leap 15.0

EXAMPLE 28.5: PASSWORD AUTHENTICATION

qemu-system-x86_64 [...] -vnc :5,password -monitor stdio

Starts the VM Guest graphical output on VNC display number 5 (usually port 5905). The
password suboption initializes a simple password-based authentication method. There
is no password set by default and you need to set one with the change vnc password
command in QEMU monitor:

QEMU 2.3.1 monitor - type 'help' for more information
(qemu) change vnc password
Password: ****

You need the -monitor stdio option here, because you would not be able to manage
the QEMU monitor without redirecting its input/output.

FIGURE 28.3: AUTHENTICATION DIALOG IN REMMINA

EXAMPLE 28.6: X509 CERTIFICATE AUTHENTICATION

The QEMU VNC server can use TLS encryption for the session and x509 certificates for
authentication. The server asks the client for a certificate and validates it against the CA
certificate. Use this authentication type if your company provides an internal certificate
authority.

qemu-system-x86_64 [...] -vnc :5,tls,x509verify=/etc/pki/qemu

270 Secure VNC Connections openSUSE Leap 15.0

EXAMPLE 28.7: X509 CERTIFICATE AND PASSWORD AUTHENTICATION

You can combine the password authentication with TLS encryption and x509 certificate
authentication to create a two-layer authentication model for clients. Remember to set the
password in the QEMU monitor after you run the following command:

qemu-system-x86_64 [...] -vnc :5,password,tls,x509verify=/etc/pki/qemu \
-monitor stdio

EXAMPLE 28.8: SASL AUTHENTICATION

Simple Authentication and Security Layer (SASL) is a framework for authentication and
data security in Internet protocols. It integrates several authentication mechanisms, like
PAM, Kerberos, LDAP and more. SASL keeps its own user database, so the connecting user
accounts do not need to exist on VM Host Server.

For security reasons, you are advised to combine SASL authentication with TLS encryption
and x509 certificates:

qemu-system-x86_64 [...] -vnc :5,tls,x509,sasl -monitor stdio

271 Secure VNC Connections openSUSE Leap 15.0

29 Virtual Machine Administration Using QEMU Mon-
itor

When QEMU is running, a monitor console is provided for performing interaction with the
user. Using the commands available in the monitor console, it is possible to inspect the running
operating system, change removable media, take screenshots or audio grabs and control other
aspects of the virtual machine.

Note
The following sections list selected useful QEMU monitor commands and their purpose.
To get the full list, enter help in the QEMU monitor command line.

29.1 Accessing Monitor Console
You can access the monitor console from QEMU window either by a keyboard shortcut—press
Ctrl – Alt – 2 (to return to QEMU, press Ctrl – Alt – 1)—or alternatively by clicking View in

the QEMU GUI window, then compatmonitor0. The most convenient way is to show the QEMU
window tabs with View Show Tabs. Then you can easily switch between the guest screen, mon-
itor screen, and the output of the serial and parallel console.

To get help while using the console, use help or ? . To get help for a specific command, use
help COMMAND .

29.2 Getting Information about the Guest System
To get information about the guest system, use info . If used without any option, the list of
possible options is printed. Options determine which part of the system will be analyzed:

info version

Shows the version of QEMU.

info commands

Lists available QMP commands.

info network

Shows the network state.

272 Accessing Monitor Console openSUSE Leap 15.0

info chardev

Shows the character devices.

info block

Information about block devices, such as hard disks, floppy drives, or CD-ROMs.

info blockstats

Read and write statistics on block devices.

info registers

Shows the CPU registers.

info cpus

Shows information about available CPUs.

info history

Shows the command line history.

info irq

Shows the interrupt statistics.

info pic

Shows the i8259 (PIC) state.

info pci

Shows the PCI information.

info tlb

Shows virtual to physical memory mappings.

info mem

Shows the active virtual memory mappings.

info jit

Shows dynamic compiler information.

info kvm

Shows the KVM information.

info numa

Shows the NUMA information.

info usb

Shows the guest USB devices.

273 Getting Information about the Guest System openSUSE Leap 15.0

info usbhost

Shows the host USB devices.

info profile

Shows the profiling information.

info capture

Shows the capture (audio grab) information.

info snapshots

Shows the currently saved virtual machine snapshots.

info status

Shows the current virtual machine status.

info mice

Shows which guest mice are receiving events.

info vnc

Shows the VNC server status.

info name

Shows the current virtual machine name.

info uuid

Shows the current virtual machine UUID.

info usernet

Shows the user network stack connection states.

info migrate

Shows the migration status.

info balloon

Shows the balloon device information.

info qtree

Shows the device tree.

info qdm

Shows the qdev device model list.

info roms

Shows the ROMs.

274 Getting Information about the Guest System openSUSE Leap 15.0

info migrate_cache_size

Shows the current migration xbzrle (“Xor Based Zero Run Length Encoding”) cache size.

info migrate_capabilities

Shows the status of the various migration capabilities, such as xbzrle compression.

info mtree

Shows the VM Guest memory hierarchy.

info trace-events

Shows available trace-events and their status.

29.3 Changing VNC Password
To change the VNC password, use the change vnc password command and enter the new
password:

(qemu) change vnc password
Password: ********
(qemu)

29.4 Managing Devices
To add a new disk while the guest is running (hotplug), use the drive_add and device_add
commands. First define a new drive to be added as a device to bus 0:

(qemu) drive_add 0 if=none,file=/tmp/test.img,format=raw,if=disk1
OK

You can confirm your new device by querying the block subsystem:

(qemu) info block
[...]
disk1: removable=1 locked=0 tray-open=0 file=/tmp/test.img ro=0 drv=raw \
encrypted=0 bps=0 bps_rd=0 bps_wr=0 iops=0 iops_rd=0 iops_wr=0

After the new drive is defined, it needs to be connected to a device so that the guest can see it.
The typical device would be a virtio-blk-pci or scsi-disk . To get the full list of available
driver values, run:

(qemu) device_add ?
name "VGA", bus PCI

275 Changing VNC Password openSUSE Leap 15.0

name "usb-storage", bus usb-bus
[...]
name "virtio-blk-pci", bus virtio-bus

Now add the device

(qemu) device_add virtio-blk-pci,drive=disk1,id=myvirtio1

and confirm with

(qemu) info pci
[...]
Bus 0, device 4, function 0:
 SCSI controller: PCI device 1af4:1001
 IRQ 0.
 BAR0: I/O at 0xffffffffffffffff [0x003e].
 BAR1: 32 bit memory at 0xffffffffffffffff [0x00000ffe].
 id "myvirtio1"

Tip
Devices added with the device_add command can be removed from the guest with
device_del . Enter help device_del on the QEMU monitor command line for more
information.

To release the device or le connected to the removable media device, use the eject DEVICE
command. Use the optional -f to force ejection.

To change removable media (like CD-ROMs), use the change DEVICE command. The name of
the removable media can be determined using the info block command:

(qemu) info block
ide1-cd0: type=cdrom removable=1 locked=0 file=/dev/sr0 ro=1 drv=host_device
(qemu) change ide1-cd0 /path/to/image

29.5 Controlling Keyboard and Mouse
It is possible to use the monitor console to emulate keyboard and mouse input if necessary. For
example, if your graphical user interface intercepts some key combinations at low level (such
as Ctrl – Alt – F1 in X Window), you can still enter them using the sendkey KEYS :

sendkey ctrl-alt-f1

276 Controlling Keyboard and Mouse openSUSE Leap 15.0

To list the key names used in the KEYS option, enter sendkey and press →| .

To control the mouse, the following commands can be used:

mouse_move DX dy [DZ]

Move the active mouse pointer to the specified coordinates dx, dy with the optional scroll
axis dz.

mouse_button VAL

Change the state of the mouse buttons (1=left, 2=middle, 4=right).

mouse_set INDEX

Set which mouse device receives events. Device index numbers can be obtained with the
info mice command.

29.6 Changing Available Memory
If the virtual machine was started with the -balloon virtio option (the paravirtualized bal-
loon device is therefore enabled), you can change the available memory dynamically. For more
information about enabling the balloon device, see Section 27.1, “Basic Installation with qemu-sys-
tem-ARCH”.

To get information about the balloon device in the monitor console and to determine whether
the device is enabled, use the info balloon command:

(qemu) info balloon

If the balloon device is enabled, use the balloon MEMORY_IN_MB command to set the requested
amount of memory:

(qemu) balloon 400

29.7 Dumping Virtual Machine Memory
To save the content of the virtual machine memory to a disk or console output, use the following
commands:

memsave ADDR SIZE FILENAME

Saves virtual memory dump starting at ADDR of size SIZE to le FILENAME

pmemsave ADDR SIZE FILENAME

277 Changing Available Memory openSUSE Leap 15.0

Saves physical memory dump starting at ADDR of size SIZE to le FILENAME -

x / FMT ADDR

Makes a virtual memory dump starting at address ADDR and formatted according to the
FMT string. The FMT string consists of three parameters COUNTFORMATSIZE :
The COUNT parameter is the number of items to be dumped.
The FORMAT can be x (hex), d (signed decimal), u (unsigned decimal), o (octal), c
(char) or i (assembly instruction).
The SIZE parameter can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86, h
or w can be specified with the i format to respectively select 16 or 32-bit code instruction
size.

xp / FMT ADDR

Makes a physical memory dump starting at address ADDR and formatted according to the
FMT string. The FMT string consists of three parameters COUNTFORMATSIZE :
The COUNT parameter is the number of the items to be dumped.
The FORMAT can be x (hex), d (signed decimal), u (unsigned decimal), o (octal), c
(char) or i (asm instruction).
The SIZE parameter can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86, h
or w can be specified with the i format to respectively select 16 or 32-bit code instruction
size.

29.8 Managing Virtual Machine Snapshots
Managing snapshots in QEMU monitor is not officially supported by SUSE yet. The information
found in this section may be helpful in specific cases.

Virtual Machine snapshots are snapshots of the complete virtual machine including the state of
CPU, RAM, and the content of all writable disks. To use virtual machine snapshots, you must
have at least one non-removable and writable block device using the qcow2 disk image format.

Snapshots are helpful when you need to save your virtual machine in a particular state. For
example, after you have configured network services on a virtualized server and want to quickly
start the virtual machine in the same state that was saved last. You can also create a snapshot
after the virtual machine has been powered o to create a backup state before you try some-
thing experimental and possibly make VM Guest unstable. This section introduces the former
case, while the latter is described in Section 27.2.3, “Managing Snapshots of Virtual Machines with

qemu-img”.

278 Managing Virtual Machine Snapshots openSUSE Leap 15.0

The following commands are available for managing snapshots in QEMU monitor:

savevm NAME

Creates a new virtual machine snapshot under the tag NAME or replaces an existing snap-
shot.

loadvm NAME

Loads a virtual machine snapshot tagged NAME .

delvm

Deletes a virtual machine snapshot.

info snapshots

Prints information about available snapshots.

(qemu) info snapshots
Snapshot list:
ID 1 TAG 2 VM SIZE 3 DATE 4 VM CLOCK 5

1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965

1 Unique identification number of the snapshot. Usually auto-incremented.

2 Unique description string of the snapshot. It is meant as a human readable version
of the ID.

3 The disk space occupied by the snapshot. Note that the more memory is consumed
by running applications, the bigger the snapshot is.

4 Time and date the snapshot was created.

5 The current state of the virtual machine's clock.

29.9 Suspending and Resuming Virtual Machine
Execution
The following commands are available for suspending and resuming virtual machines:

stop

Suspends the execution of the virtual machine.

279 Suspending and Resuming Virtual Machine Execution openSUSE Leap 15.0

cont

Resumes the execution of the virtual machine.

system_reset

Resets the virtual machine. The effect is similar to the reset button on a physical machine.
This may leave the le system in an unclean state.

system_powerdown

Sends an ACPI shutdown request to the machine. The effect is similar to the power button
on a physical machine.

q or quit

Terminates QEMU immediately.

29.10 Live Migration
The live migration process allows to transmit any virtual machine from one host system to an-
other host system without any interruption in availability. It is possible to change hosts perma-
nently or only during maintenance.

The requirements for live migration:

All requirements from Section 9.7.1, “Migration Requirements” are applicable.

Live migration is only possible between VM Host Servers with the same CPU features.

AHCI interface, VirtFS feature, and the -mem-path command line option are not compatible
with migration.

The guest on the source and destination hosts must be started in the same way.

-snapshot qemu command line option should not be used for migration (and this qemu
command line option is not supported).

Important: Support Status
The postcopy mode is not yet supported in openSUSE Leap. It is released as a technol-
ogy preview only. For more information about postcopy , see http://wiki.qemu.org/Fea-

tures/PostCopyLiveMigration .

280 Live Migration openSUSE Leap 15.0

http://wiki.qemu.org/Features/PostCopyLiveMigration
http://wiki.qemu.org/Features/PostCopyLiveMigration

More recommendations can be found at the following Web site: http://www.linux-kvm.org/page/

Migration

The live migration process has the following steps:

1. The virtual machine instance is running on the source host.

2. The virtual machine is started on the destination host in the frozen listening mode. The
parameters used are the same as on the source host plus the -incoming tcp:IP:PORT
parameter, where IP specifies the IP address and PORT specifies the port for listening
to the incoming migration. If 0 is set as IP address, the virtual machine listens on all
interfaces.

3. On the source host, switch to the monitor console and use the migrate -d tcp: DESTI-
NATION_IP : PORT command to initiate the migration.

4. To determine the state of the migration, use the info migrate command in the monitor
console on the source host.

5. To cancel the migration, use the migrate_cancel command in the monitor console on
the source host.

6. To set the maximum tolerable downtime for migration in seconds, use the mi-
grate_set_downtime NUMBER_OF_SECONDS command.

7. To set the maximum speed for migration in bytes per second, use the migrate_set_speed
BYTES_PER_SECOND command.

29.11 QMP - QEMU Machine Protocol
QMP is a JSON-based protocol that allows applications—such as libvirt—to communicate
with a running QEMU instance. There are several ways you can access the QEMU monitor using
QMP commands.

29.11.1 Access QMP via Standard Input/Output

The most flexible way to use QMP is by specifying the -mon option. The following example
creates a QMP instance using standard input/output. Note that in the following examples, ->
marks lines with commands sent from client to the running QEMU instance, while <- marks
lines with the output returned from QEMU.

281 QMP - QEMU Machine Protocol openSUSE Leap 15.0

http://www.linux-kvm.org/page/Migration
http://www.linux-kvm.org/page/Migration

tux > sudo qemu-system-x86_64 [...] \
-chardev stdio,id=mon0 \
-mon chardev=mon0,mode=control,pretty=on

<- {
 "QMP": {
 "version": {
 "qemu": {
 "micro": 0,
 "minor": 0,
 "major": 2
 },
 "package": ""
 },
 "capabilities": [
]
 }
}

When a new QMP connection is established, QMP sends its greeting message and enters capa-
bilities negotiation mode. In this mode, only the qmp_capabilities command works. To ex-
it capabilities negotiation mode and enter command mode, the qmp_capabilities command
must be issued rst:

-> { "execute": "qmp_capabilities" }
<- {
 "return": {
 }
}

Note that "return": {} is a QMP's success response.

QMP's commands can have arguments. For example to eject a CD-ROM drive, enter the follow-
ing:

->{ "execute": "eject", "arguments": { "device": "ide1-cd0" } }
<- {
 "timestamp": {
 "seconds": 1410353381,
 "microseconds": 763480
 },
 "event": "DEVICE_TRAY_MOVED",
 "data": {
 "device": "ide1-cd0",
 "tray-open": true
 }

282 Access QMP via Standard Input/Output openSUSE Leap 15.0

}
{
 "return": {
 }
}

29.11.2 Access QMP via Telnet

Instead of the standard input/output, you can connect the QMP interface to a network socket
and communicate with it via a specified port:

tux > sudo qemu-system-x86_64 [...] \
-chardev socket,id=mon0,host=localhost,port=4444,server,nowait \
-mon chardev=mon0,mode=control,pretty=on

And then run telnet to connect to port 4444:

tux > telnet localhost 4444
Trying ::1...
Connected to localhost.
Escape character is '^]'.
<- {
 "QMP": {
 "version": {
 "qemu": {
 "micro": 0,
 "minor": 0,
 "major": 2
 },
 "package": ""
 },
 "capabilities": [
]
 }
}

You can create several monitor interfaces at the same time. The following example creates one
HMP instance—human monitor which understands 'normal' QEMU monitor's commands—on
the standard input/output, and one QMP instance on local host port 4444:

tux > sudo qemu-system-x86_64 [...] \
-chardev stdio,id=mon0 -mon chardev=mon0,mode=readline \
-chardev socket,id=mon1,host=localhost,port=4444,server,nowait \
 -mon chardev=mon1,mode=control,pretty=on

283 Access QMP via Telnet openSUSE Leap 15.0

29.11.3 Access QMP via Unix Socket

Invoke QEMU using the -qmp option, and create a unix socket:

tux > sudo qemu-system-x86_64 [...] \
-qmp unix:/tmp/qmp-sock,server --monitor stdio

QEMU waiting for connection on: unix:./qmp-sock,server

To communicate with the QEMU instance via the /tmp/qmp-sock socket, use nc (see man 1
nc for more information) from another terminal on the same host:

tux > sudo nc -U /tmp/qmp-sock
<- {"QMP": {"version": {"qemu": {"micro": 0, "minor": 0, "major": 2} [...]

29.11.4 Access QMP via libvirt's virsh Command

If you run your virtual machines under libvirt (see Part II, “Managing Virtual Machines with

libvirt”), you can communicate with its running guests by running the virsh qemu-moni-
tor-command :

tux > sudo virsh qemu-monitor-command vm_guest1 \
--pretty '{"execute":"query-kvm"}'
<- {
 "return": {
 "enabled": true,
 "present": true
 },
 "id": "libvirt-8"
}

In the above example, we ran the simple command query-kvm which checks if the host is
capable of running KVM and if KVM is enabled.

Tip: Generating Human-Readable Output
To use the standard human-readable output format of QEMU instead of the JSON format,
use the --hmp option:

tux > sudo virsh qemu-monitor-command vm_guest1 --hmp "query-kvm"

284 Access QMP via Unix Socket openSUSE Leap 15.0

VI Managing Virtual Machines with LXC

30 Linux Containers 286

31 Migration from LXC to libvirt-lxc 293

30 Linux Containers

30.1 Setting Up LXC Distribution Containers
A container is a kind of “virtual machine” that can be started, stopped, frozen, or cloned (to
name but a few tasks). To set up an LXC container, you rst need to create a root le system
containing the guest distribution:

PROCEDURE 30.1: CREATING A ROOT FILE SYSTEM

There is currently no GUI to create a root le system. You will thus need to open a terminal
and use zypper as user root to populate the new root le system. In the following steps,
the new root le system will be created in /PATH/TO/ROOTFS .

1. Add the openSUSE Leap repository and the corresponding update repository to the new
root le system:

root # zypper --root /PATH/TO/ROOTFS ar http://download.opensuse.org/distribution/
leap/42.3/repo/oss/ OSS
root # zypper --root /PATH/TO/ROOTFS ar http://download.opensuse.org/update/
leap/42.3/oss/ Update-OSS

2. Refresh the repositories:

root # zypper --root /PATH/TO/ROOTFS ref

3. Install a minimal system:

root # zypper --root /PATH/TO/ROOTFS in -t pattern minimal_base

4. Set the root password:

root # echo "ttyS0" >>/PATH/TO/ROOTFS/etc/securetty
root # echo "root:YOURPASSWD" | chpasswd -R /PATH/TO/ROOTFS

PROCEDURE 30.2: DEFINING THE CONTAINER

1. Start Virtual Machine Manager.

2. (Optional) If not already present, add a local LXC connection by clicking File Add Con-
nection.

286 Setting Up LXC Distribution Containers openSUSE Leap 15.0

Select LXC (Linux Containers) as the hypervisor and click Connect.

3. Select the localhost (LXC) connection and click File New Virtual Machine menu.

4. Activate Operating system container and click Forward.

5. Type the path to the root le system from Procedure 30.1, “Creating a Root File System” and
click the Forward button.

6. Choose the maximum amount of memory and CPUs to allocate to the container. Then
click the Forward button.

7. Type in a name for the container. This name will be used for all virsh commands on
the container.
Click Advanced options. Select the network to connect the container to and click the Finish
button: the container will then be created and started. A console will also be automatically
opened.

PROCEDURE 30.3: CONFIGURING IP ADDRESSES FOR NETWORK INTERFACES

Network devices and hostdev devices with network capabilities can be provided with one
or more IP addresses to set on the network device in the guest. However, some hypervisors
or network device types will simply ignore them or only use the rst one.

1. Edit the container XML configuration using virsh:

tux > virsh -c lxc:/// edit MYCONTAINER

2. The following example shows how to set one or multiple IP addresses:

[...]
<devices>
 <interface type='network'>
 <source network='default'/>
 <target dev='vnet0'/>
 <ip address='192.168.122.5' prefix='24'/>
 <ip address='192.168.122.5' prefix='24' peer 1 ='10.0.0.10'/>
 <route family 2 ='ipv4' address 3 ='192.168.122.0' prefix 4 ='24'
 gateway 5 ='192.168.122.1'/>
 <route family 2 ='ipv4' address 3 ='192.168.122.8' gateway 5 ='192.168.122.1'/>
 </interface>
 [...]
 <hostdev mode='capabilities' type='net'>
 <source>
 <interface>eth0</interface>
 </source>

287 Setting Up LXC Distribution Containers openSUSE Leap 15.0

 <ip address='192.168.122.6' prefix='24'/>
 <route family='ipv4' address='192.168.122.0' prefix='24' gateway='192.168.122.1'/>
 <route family='ipv4' address='192.168.122.8' gateway='192.168.122.1'/>
 </hostdev>
</devices>
[...]

1 Optional attribute. Holds the IP address of the other end of a point-to-point network
device.

2 Can be set to either ipv4 or ipv6 .

3 Contains the IP address.

4 Optional parameter (will be automatically set if not specified). Defines the number
of 1 bits in the netmask. For IPv4, the default prefix is determined according to the
network “class” (A , B , or C). For IPv6, the default prefix is 64 .

5 If you do not specify a default gateway in the XML le, none will be set.

3. You can also add route elements to define IP routes to add in the guest. These are used
by the LXC driver.

[...]
<devices>
 <interface type 1 ='ethernet'>
 <source> 2

 <ip address 3 ='192.168.123.1' prefix='24'/>
 <ip address 4 ='10.0.0.10' prefix='24' peer='192.168.122.5'/>
 <route 5 family='ipv4' address='192.168.42.0' prefix='24'
 gateway='192.168.123.4'/>
 </source>
 [...]
 </interface>
 [...]
</devices>
[...]

1 Network devices of type ethernet can optionally be provided with one or multiple
IP addresses (3 , 4) and with one or multiple routes (5) to set on the host side
of the network device.
These are configured as subelements of the source element (2) of the interface.
They have the same attributes as the similarly named elements used to configure the
guest side of the interface (see the step above).

3 First IP address for the network device of type ethernet .

288 Setting Up LXC Distribution Containers openSUSE Leap 15.0

4 Second IP address for the network device of type ethernet .

5 Route to set on the host side of the network device.

Find further details about the attributes of this element at http://libvirt.org/formatnet-

work.html#elementsStaticroute .

4. Save the changes and exit the editor.

Note: Container Network
To configure the container network, edit the /etc/sysconfig/network/ifcfg-* les.

30.2 Setting Up LXC Application Containers
Libvirt also allows to run single applications instead of full blown Linux distributions in con-
tainers. In this example, bash will be started in its own container.

PROCEDURE 30.4: DEFINING AN APPLICATION CONTAINER USING YAST

1. Start Virtual Machine Manager.

2. (Optional) If not already present, add a local LXC connection by clicking File Add Con-
nection.
Select LXC (Linux Containers) as the hypervisor and click Connect.

3. Select the localhost (LXC) connection and click File New Virtual Machine menu.

4. Activate Application container and click Forward.
Set the path to the application to be launched. As an example, the eld is lled with /
bin/sh , which is ne to create a rst container. Click Forward.

5. Choose the maximum amount of memory and CPUs to allocate to the container. Click
Forward.

6. Type in a name for the container. This name will be used for all virsh commands on
the container.
Click Advanced options. Select the network to connect the container to and click Finish.
The container will be created and started. A console will be opened automatically.
Note that the container will be destroyed after the application has finished running.

289 Setting Up LXC Application Containers openSUSE Leap 15.0

http://libvirt.org/formatnetwork.html#elementsStaticroute
http://libvirt.org/formatnetwork.html#elementsStaticroute

30.3 Securing a Container Using AppArmor
By default, containers are not secured using AppArmor or SELinux. There is no graphical user
interface to change the security model for a libvirt domain, but virsh will help.

1. Edit the container XML configuration using virsh:

tux > virsh -c lxc:/// edit MYCONTAINER

2. Add the following to the XML configuration, save it and exit the editor.

<domain>
 ...
 <seclabel type="dynamic" model="apparmor"/>
 ...
</domain>

3. With this configuration, an AppArmor profile for the container will be created in the /
etc/apparmor.d/libvirt directory. The default profile only allows the minimum appli-
cations to run in the container. This can be changed by modifying the libvirt-CONTAIN-
ER-uuid le: this le is not overwritten by libvirt.

30.4 Differences between the libvirt LXC Driver and
LXC
openSUSE versions prior to Leap were shipping LXC, while openSUSE Leap comes with the libvirt
LXC driver, sometimes named libvirt-lxc to avoid confusion. The containers are not managed or
configured in the same way in these tools. Here is a non-exhaustive list of differences.

The main difference is that domain configuration in libvirt is an XML le, while LXC configu-
ration is a properties le. Most of the LXC properties can be mapped to the domain XML. The
properties that cannot be migrated are:

lxc.network.script.up: this script can be implemented using the /etc/libvirt/hooks/net-
work libvirt hook, though the script will need to be adapted.

lxc.network.ipv*: libvirt cannot set the container network configuration from the domain
configuration.

lxc.network.name: libvirt cannot set the container network card name.

290 Securing a Container Using AppArmor openSUSE Leap 15.0

lxc.devttydir: libvirt does not allow changing the location of the console devices.

lxc.console: there is currently no way to log the output of the console into a le on the
host for libvirt LXC containers.

lxc.pivotdir: libvirt does not allow to ne-tune the directory used for the pivot_root .
/.olroot is used.

lxc.rootfs.mount: libvirt does not allow to ne-tune this.

LXC VLAN networks automatically create the VLAN interface on the host and then move it into
the guest namespace. libvirt-lxc configuration can mention a VLAN tag ID only for Open vSwitch
tap devices or PCI pass-through of SR-IOV VF. The conversion tool actually needs the user to
manually create the VLAN interface on the host side.

LXC rootfs can also be an image le, but LXC brute-forces the mount to try to detect the proper
le system format. libvirt-lxc can mount image les of several formats, but the 'auto' value for
the format parameter is explicitly not supported. This means that the generated configuration
will need to be tweaked by the user to get a proper match in that case.

LXC can support any cgroup configuration, even future ones, while libvirt domain configuration,
needs to map each of them.

LXC can mount block devices in the rootfs, but it cannot mount raw partition les: the le needs
to be manually attached to a loop device. On the other hand libvirt-lxc can mount block devices,
but also partition les of any format.

30.5 Sharing Namespaces across Containers
Like Docker Open Source Engine, libvirt allows you to inherit the namespace from containers or
processes to share the network namespace. The following example shows how to share required
namespaces.

<domain type='lxc' xmlns:lxc='http://libvirt.org/schemas/domain/lxc/1.0'>
 [...]
 <lxc:namespace>
 <lxc:sharenet type='netns' value='red'/>
 <lxc:shareuts type='name' value='CONTAINER_1'/>
 <lxc:shareipc type='pid' value='12345'/>
 </lxc:namespace>
 </domain>

291 Sharing Namespaces across Containers openSUSE Leap 15.0

The netns option is specific to sharenet . Use it to use an existing network namespace (instead
of creating a new network namespace for the container). In this case, the privnet option will
be ignored.

30.6 For More Information

LXC Container Driver

http://libvirt.org/drvlxc.html

292 For More Information openSUSE Leap 15.0

http://libvirt.org/drvlxc.html

31 Migration from LXC to libvirt-lxc

Since openSUSE Leap, LXC is integrated into libvirt library. This decision has several advan-
tages over using LXC as a separate solution—such as a unified approach with other virtualization
solutions or independence on the kernel used. This chapter describes steps needed to migrate
an existing LXC environment for use with the libvirt library.

31.1 Host Migration

The migration itself has two phases. You rst need to migrate the host, then the LXC containers.
After that, you can run the original containers as VM Guests in the libvirt environment.

PROCEDURE 31.1: HOST MIGRATION

1. Upgrade the host to openSUSE Leap 15 using the official DVD media.

2. After the upgrade, install the libvirt-daemon-lxc and libvirt-daemon-config-net-
work packages.

3. Create a libvirt XML configuration lxc_container.xml from the existing container
lxc_container :

tux > sudo virt-lxc-convert /etc/lxc/lxc_container/config > lxc_container.xml

4. Check if the network configuration on the host is the same as in the container configuration
le, and x it if needed.

5. Check the lxc_container.xml le for any weird or missing configuration. Note that
some LXC configuration options cannot be mapped to libvirt configuration. Although
the conversion should usually be ne, check Section 30.4, “Differences between the libvirt LXC

Driver and LXC” for more details.

6. Define the container in libvirt based on the created XML definition:

tux > sudo virsh -c lxc:/// define lxc_container.xml

293 Host Migration openSUSE Leap 15.0

31.2 Container Migration

After the host is migrated, the LXC container in libvirt will not boot. It needs to be migrated
to openSUSE Leap 15 as well to get everything working.

PROCEDURE 31.2: CONTAINER MIGRATION

1. The baseproduct le is missing (and zypper keeps complaining about it). Create the
relevant symbolic link:

root # ROOTFS=/var/lib/lxc/lxc_container/rootfs
root # ln -s $ROOTFS/etc/products.d/SUSE_SLES.prod $ROOTFS/etc/products.d/
baseproduct

2. Add the DVD repository. Note that you need to replace the DVD device with the one
attached to your container:

3. Disable or remove previous repositories:

root # zypper --root $ROOTFS lr
 | Alias | Name | Enabled | Refresh
--+-----------------------------+------------------------------+---------+--------
1 | SLES12 | SLES12 | Yes | No
2 | SUSE-[...]-Server-12-SP3 38 | SUSE-[...]-Server-12-SP3 138 | Yes | No

root # zypper --root $ROOTFS rr 2

root # zypper --root $ROOTFS ar \
cd:///?devices=/dev/dvd "openSUSE 15"

4. Disable or remove previous repositories:

root # zypper --root $ROOTFS lr
 | Alias | Name | Enabled | Refresh
--+-----------------------------+------------------------------+---------+--------
1 | openSUSE 42.3 Main | openSUSE 42.3 Main | Yes | No
2 | openSUSE 42.3 Update | openSUSE 42.3 Update | Yes | No

root # zypper --root $ROOTFS rr 2

5. Upgrade the container:

root # zypper --root $ROOTFS dup

294 Container Migration openSUSE Leap 15.0

6. Install the Minimal pattern to make sure everything required is installed:

root # zypper --root $ROOTFS in -t pattern Minimal

31.3 Starting the Container
After the host and container migration is complete, the container can be started:

root # virsh -c lxc:/// start lxc_container

If you need to get a console to view the logging messages produced by the container, run:

root # virsh -c lxc:/// console lxc_container

295 Starting the Container openSUSE Leap 15.0

Glossary

General

Create Virtual Machine Wizard
A software program available in YaST and Virtual Machine Manager that provides a graph-
ical interface to guide you through the steps to create virtual machines. It can also be run in
text mode by entering virt-install at a command prompt in the host environment.

Dom0
The term is used in Xen environments, and refers to a virtual machine. The host operating
system is actually a virtual machine running in a privileged domain and can be called Dom0.
All other virtual machines on the host run in unprivileged domains and can be called domain
U's.

hardware-assisted
Intel* and AMD* provide virtualization hardware-assisted technology. This reduces the fre-
quency of VM IN/OUT (fewer VM traps), because software is a major source of overhead,
and increases the efficiency (the execution is done by the hardware). Moreover, this reduces
the memory footprint, provides better resource control, and allows secure assignment of
specific I/O devices.

Host Environment
The desktop or command line environment that allows interaction with the host computer's
environment. It provides a command line environment and can also include a graphical
desktop, such as GNOME or IceWM. The host environment runs as a special type of virtual
machine that has privileges to control and manage other virtual machines. Other commonly
used terms include Dom0, privileged domain, and host operating system.

Hypervisor
The software that coordinates the low-level interaction between virtual machines and the
underlying physical computer hardware.

KVM
See Chapter 3, Introduction to KVM Virtualization

296 openSUSE Leap 15.0

Paravirtualized Frame Buffer
The video output device that drives a video display from a memory buer containing a
complete frame of data for virtual machine displays running in paravirtual mode.

VHS
Virtualization Host Server

The physical computer running a SUSE virtualization platform software. The virtualization
environment consists of the hypervisor, the host environment, virtual machines, and asso-
ciated tools, commands, and configuration les. Other commonly used terms include host,
Host Computer, Host Machine (HM), Virtual Server (VS), Virtual Machine Host (VMH), and
VM Host Server (VHS).

VirtFS
VirtFS is a new paravirtualized le system interface designed for improving pass-through
technologies in the KVM environment. It is based on the VirtIO framework.

Virtual Machine
A virtualized PC environment (VM) capable of hosting a guest operating system and associ-
ated applications. Could be also called a VM Guest.

Virtual Machine Manager
A software program that provides a graphical user interface for creating and managing vir-
tual machines.

Virtualized
A guest operating system or application running on a virtual machine.

Xen
See Chapter 2, Introduction to Xen Virtualization

xl
A set of commands for Xen that lets administrators manage virtual machines from a com-
mand prompt on the host computer. It replaced the deprecated xm tool stack.

297 openSUSE Leap 15.0

CPU

CPU capping
Virtual CPU capping allows you to set vCPU capacity to 1–100 percent of the physical CPU
capacity.

CPU hotplugging
CPU hotplugging is used to describe the functions of replacing/adding/removing a CPU
without shutting down the system.

CPU over-commitment
Virtual CPU over-commitment is the ability to assign more virtual CPUs to VMs than the
actual number of physical CPUs present in the physical system. This procedure does not
increase the overall performance of the system, but might be useful for testing purposes.

CPU pinning
Processor affinity, or CPU pinning enables the binding and unbinding of a process or a thread
to a central processing unit (CPU) or a range of CPUs.

Network

Bridged Networking
A type of network connection that lets a virtual machine be identified on an external network
as a unique identity that is separate from and unrelated to its host computer.

Empty Bridge
A type of network bridge that has no physical network device or virtual network device
provided by the host. This lets virtual machines communicate with other virtual machines
on the same host but not with the host or on an external network.

External Network
The network outside a host's internal network environment.

Internal Network
A type of network configuration that restricts virtual machines to their host environment.

298 openSUSE Leap 15.0

Local Bridge
A type of network bridge that has a virtual network device but no physical network device
provided by the host. This lets virtual machines communicate with the host and other virtual
machines on the host. Virtual machines can communicate on an external network through
the host.

Network Address Translation (NAT)
A type of network connection that lets a virtual machine use the IP address and MAC address
of the host.

No Host Bridge
A type of network bridge that has a physical network device but no virtual network device
provided by the host. This lets virtual machines communicate on an external network but
not with the host. This lets you separate virtual machine network communications from the
host environment.

Traditional Bridge
A type of network bridge that has both a physical network device and a virtual network
device provided by the host.

Storage

AHCI
The Advanced Host Controller Interface (AHCI) is a technical standard defined by Intel*
that specifies the operation of Serial ATA (SATA) host bus adapters in a non-implementa-
tion-specific manner.

Block Device
Data storage devices, such as CD-ROM drives or disk drives, that move data in the form of
blocks. Partitions and volumes are also considered block devices.

File-Backed Virtual Disk
A virtual disk based on a le, also called a disk image le.

Raw Disk
A method of accessing data on a disk at the individual byte level instead of through its le
system.

299 openSUSE Leap 15.0

Sparse image file
A disk image le that does not reserve its entire amount of disk space but expands as data
is written to it.

xvda
The drive designation given to the rst virtual disk on a paravirtual machine.

Linux Containers

cgroups
Kernel Control Groups (commonly called “cgroups”) are a kernel feature that allows aggre-
gating or partitioning tasks (processes) and all their children into hierarchical organized
groups to isolate resources.

See also Book “System Analysis and Tuning Guide”, Chapter 9 “Kernel Control Groups”.

chroot
A change root (chroot, or change root jail) is a section in the le system that is isolated from
the rest of the le system. For this purpose, the chroot or pivot_root command is used to
change the root of the le system. A program that is executed in such a “chroot jail” cannot
access les outside the designated directory tree.

container
Can be seen as a kind of “virtual machine” on the host server that can run any Linux system,
for example openSUSE, SUSE Linux Enterprise Desktop, or SUSE Linux Enterprise Server.
The main difference with a normal virtual machine is that the container shares its kernel
with the host it runs on.

Kernel namespaces
A kernel feature to isolate some resources like network, users, and others for a group of
processes.

300 openSUSE Leap 15.0

Acronyms

ACPI
Advanced Configuration and Power Interface (ACPI) specification provides an open standard
for device configuration and power management by the operating system.

AER
Advanced Error Reporting

AER is a capability provided by the PCI Express specification which allows for reporting of
PCI errors and recovery from some of them.

APIC
Advanced Programmable Interrupt Controller (APIC) is a family of interrupt controllers.

BDF
Bus:Device:Function

Notation used to succinctly describe PCI and PCIe devices.

CG
Control Groups

Feature to limit, account and isolate resource usage (CPU, memory, disk I/O, etc.).

EDF
Earliest Deadline First

This scheduler provides weighted CPU sharing in an intuitive way and uses real-time algo-
rithms to ensure time guarantees.

EPT
Extended Page Tables

Performance in a virtualized environment is close to that in a native environment. Virtu-
alization does create some overheads, however. These come from the virtualization of the
CPU, the MMU, and the I/O devices. In some recent x86 processors AMD and Intel have
begun to provide hardware extensions to help bridge this performance gap. In 2006, both
vendors introduced their rst generation hardware support for x86 virtualization with AMD-
Virtualization (AMD-V) and Intel® VT-x technologies. Recently Intel introduced its second
generation of hardware support that incorporates MMU-virtualization, called Extended Page

301 openSUSE Leap 15.0

Tables (EPT). EPT-enabled systems can improve performance compared to using shadow
paging for MMU virtualization. EPT increases memory access latencies for a few workloads.
This cost can be reduced by effectively using large pages in the guest and the hypervisor.

FLASK
Flux Advanced Security Kernel

Xen implements a type of mandatory access control via a security architecture called FLASK
using a module of the same name.

HAP
High Assurance Platform

HAP combines hardware and software technologies to improve workstation and network
security.

HVM
Hardware Virtual Machine (commonly called like this by Xen).

IOMMU
Input/Output Memory Management Unit

IOMMU (AMD* technology) is a memory management unit (MMU) that connects a direct
memory access-capable (DMA-capable) I/O bus to the main memory.

KSM
Kernel Same Page Merging

KSM allows for automatic sharing of identical memory pages between guests to save host
memory. KVM is optimized to use KSM if enabled on the VM Host Server.

MMU
Memory Management Unit

is a computer hardware component responsible for handling accesses to memory requested
by the CPU. Its functions include translation of virtual addresses to physical addresses (that
is, virtual memory management), memory protection, cache control, bus arbitration and in
simpler computer architectures (especially 8-bit systems) bank switching.

PAE
Physical Address Extension

302 openSUSE Leap 15.0

32-bit x86 operating systems use Physical Address Extension (PAE) mode to enable address-
ing of more than 4 GB of physical memory. In PAE mode, page table entries (PTEs) are 64
bits in size.

PCID
Process-context identifiers

These are a facility by which a logical processor may cache information for multiple lin-
ear-address spaces so that the processor may retain cached information when software
switches to a different linear address space. INVPCID instruction is used for ne-grained TLB

ush, which is benefit for kernel.

PCIe
Peripheral Component Interconnect Express

PCIe was designed to replace older PCI, PCI-X and AGP bus standards. PCIe has numerous
improvements including a higher maximum system bus throughput, a lower I/O pin count
and smaller physical footprint. Moreover it also has a more detailed error detection and re-
porting mechanism (AER), and a native hotplug functionality. It is also backward compatible
with PCI.

PSE and PSE36
Page Size Extended

PSE refers to a feature of x86 processors that allows for pages larger than the traditional 4
KiB size. PSE-36 capability offers 4 more bits, in addition to the normal 10 bits, which are
used inside a page directory entry pointing to a large page. This allows a large page to be
located in 36-bit address space.

PT
Page Table

A page table is the data structure used by a virtual memory system in a computer operat-
ing system to store the mapping between virtual addresses and physical addresses. Virtual
addresses are those unique to the accessing process. Physical addresses are those unique to
the hardware (RAM).

QXL
QXL is a cirrus VGA framebuffer (8M) driver for virtualized environment.

RVI or NPT
Rapid Virtualization Indexing, Nested Page Tables

303 openSUSE Leap 15.0

An AMD second generation hardware-assisted virtualization technology for the processor
memory management unit (MMU).

SATA
Serial ATA

SATA is a computer bus interface that connects host bus adapters to mass storage devices
such as hard disks and optical drives.

Seccomp2-based sandboxing
Sandboxed environment where only predetermined system calls are permitted for added
protection against malicious behavior.

SMEP
Supervisor Mode Execution Protection

This prevents the execution of user-mode pages by the Xen hypervisor, making many appli-
cation-to-hypervisor exploits much harder.

SPICE
Simple Protocol for Independent Computing Environments

SXP
An SXP le is a Xen Configuration File.

TCG
Tiny Code Generator

Instructions are emulated rather than executed by the CPU.

THP
Transparent Huge Pages

This allows CPUs to address memory using pages larger than the default 4 KB. This helps
reduce memory consumption and CPU cache usage. KVM is optimized to use THP (via mad-
vise and opportunistic methods) if enabled on the VM Host Server.

TLB
Translation Lookaside Buer

TLB is a cache that memory management hardware uses to improve virtual address transla-
tion speed. All current desktop, notebook, and server processors use a TLB to map virtual
and physical address spaces, and it is nearly always present in any hardware that uses virtual
memory.

304 openSUSE Leap 15.0

VCPU
A scheduling entity, containing each state for virtualized CPU.

VDI
Virtual Desktop Infrastructure

VFIO
Since kernel v3.6; a new method of accessing PCI devices from user space called VFIO.

VHS
Virtualization Host Server

VM root
VMM will run in VMX root operation and guest software will run in VMX non-root operation.
Transitions between VMX root operation and VMX non-root operation are called VMX transi-
tions.

VMCS
Virtual Machine Control Structure

VMX non-root operation and VMX transitions are controlled by a data structure called a
virtual-machine control structure (VMCS). Access to the VMCS is managed through a com-
ponent of processor state called the VMCS pointer (one per logical processor). The value
of the VMCS pointer is the 64-bit address of the VMCS. The VMCS pointer is read and writ-
ten using the instructions VMPTRST and VMPTRLD. The VMM configures a VMCS using the
VMREAD, VMWRITE, and VMCLEAR instructions. A VMM could use a different VMCS for
each virtual machine that it supports. For a virtual machine with multiple logical processors
(virtual processors), the VMM could use a different VMCS for each virtual processor.

VMDq
Virtual Machine Device Queue

Multi-queue network adapters exist which support multiple VMs at the hardware level, hav-
ing separate packet queues associated to the different hosted VMs (by means of the IP ad-
dresses of the VMs).

VMM
Virtual Machine Monitor (Hypervisor)

305 openSUSE Leap 15.0

When the processor encounters an instruction or event of interest to the Hypervisor (VMM), it
exits from guest mode back to the VMM. The VMM emulates the instruction or other event,
at a fraction of native speed, and then returns to guest mode. The transitions from guest
mode to the VMM and back again are high-latency operations, during which guest execution
is completely stalled.

VMX
Virtual Machine eXtensions

VPID
New support for software control of TLB (VPID improves TLB performance with small VMM

development effort).

VT-d
Virtualization Technology for Directed I/O

Like IOMMU for Intel* (https://software.intel.com/en-us/articles/intel-virtualization-technolo-

gy-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices) .

vTPM
Component to establish end-to-end integrity for guests via Trusted Computing.

306 openSUSE Leap 15.0

https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices
https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices

A Appendix

A.1 Generating x509 Client/Server Certificates

To be able to create x509 client and server certificates you need to issue them by a Certificate
Authority (CA). It is recommended to set up an independent CA that only issues certificates for
libvirt .

1. Set up a CA as described in Book “Security Guide”, Chapter 18 “Managing X.509 Certification”,

Section 18.2.1 “Creating a Root CA”.

2. Create a server and a client certificate as described in Book “Security Guide”, Chapter 18

“Managing X.509 Certification”, Section 18.2.4 “Creating or Revoking User Certificates”. The Com-
mon Name (CN) for the server certificate must be the fully qualified host name, while the
Common Name for the client certificate can be freely chosen. For all other elds stick with
the defaults suggested by YaST.
Export the client and server certificates to a temporary location (for example, /tmp/
x509/) by performing the following steps:

a. Select the certificate on the certificates tab.

b. Choose Export Export to File Certificate and the Key Unencrypted in PEM Format,
provide the Certificate Password and the full path and the le name under File Name,
for example, /tmp/x509/server.pem or /tmp/x509/client.pem .

c. Open a terminal and change to the directory where you have saved the certificate
and issue the following commands to split it into certificate and key (this example
splits the server key):

tux > csplit -z -f s_ server.pem '/-----BEGIN/' '{1}'
 mv s_00 servercert.pem
 mv s_01 serverkey.pem

d. Repeat the procedure for each client and server certificate you want to export.

3. Finally export the CA certificate by performing the following steps:

a. Switch to the Description tab.

307 Generating x509 Client/Server Certificates openSUSE Leap 15.0

b. Choose Advanced Export to File Only the Certificate in PEM Format and enter the
full path and the le name under File Name, for example, /tmp/x509/cacert.pem .

308 Generating x509 Client/Server Certificates openSUSE Leap 15.0

B XM, XL Toolstacks and Libvirt framework

B.1 Xen Toolstacks
Since the early Xen 2.x releases, xend has been the de facto toolstack for managing Xen instal-
lations. In Xen 4.1, a new toolstack called libxenlight (also known as libxl) was introduced with
technology preview status. libxl is a small, low-level library written in C. It has been designed
to provide a simple API for all client toolstacks (XAPI (http://wiki.xen.org/wiki/XAPI) , libvirt ,
xl). In Xen 4.2, libxl was promoted to officially supported status and xend was marked depre-
cated. xend has been included in the Xen 4.3 and 4.4 series to give users ample time to convert
their tooling to libxl. It has been removed from the upstream Xen project and will no longer be
provided starting with the Xen 4.5 series and openSUSE Leap 42.1.

. Starting with openSUSE Leap 42.1, xend is no longer supported.

One of the major differences between xend and libxl is that the former is stateful, while the
latter is stateless. With xend , all client applications such as xm and libvirt see the same
system state. xend is responsible for maintaining state for the entire Xen host. In libxl, client
applications such as xl or libvirt must maintain state. Thus domains created with xl or
not visible or known to other libxl applications such as libvirt . Generally, it is discouraged
to mix and match libxl applications and is preferred that a single libxl application be used to
manage a Xen host. In openSUSE Leap, we recommend to use libvirt to manage Xen hosts.
This allows management of the Xen system through libvirt applications such as virt-man-
ager , virt-install , virt-viewer , libguestfs, etc. If xl is used to manage the Xen host, any
virtual machines under its management will not be accessible to libvirt . Hence, they are not
accessible to any of the libvirt applications.

B.1.1 Upgrading from xend/xm to xl/libxl

The xl application, along with its configuration format (see man xl.cfg), was designed to be
backward-compatible with the xm application and its configuration format (see man xm.cfg).
Existing xm configuration should be usable with xl . Since libxl is stateless, and xl does not
support the notion of managed domains, SUSE recommends using libvirt to manage Xen
hosts. SUSE has provided a tool called xen2libvirt , which provides a simple mechanism to
import domains previously managed by xend into libvirt . See Section B.2, “Import Xen Domain

Configuration into libvirt” for more information on xen2libvirt .

309 Xen Toolstacks openSUSE Leap 15.0

http://wiki.xen.org/wiki/XAPI

B.1.2 XL design

The basic structure of every xl command is:

xl subcommand OPTIONS DOMAIN

DOMAIN is the numeric domain id, or the domain name (which will be internally translated to
domain id), and OPTIONS are subcommand specific options.

Although xl/libxl was designed to be backward-compatible with xm/xend, there are a few dif-
ferences that should be noted:

Managed or persistent domains. libvirt now provides this functionality.

xl/libxl does not support Python code in the domain configuration les.

xl/libxl does not support creating domains from SXP format configuration les (xm cre-
ate -F).

xl/libxl does not support sharing storage across DomU's via w! in domain configuration
les.

xl/libxl is relatively new and under heavy development, hence a few features are still missing
with regard to the xm/xend toolstack:

SCSI LUN/Host pass-through (PVSCSI)

USB pass-through (PVUSB)

Direct Kernel Boot for fully virtualized Linux guests for Xen

B.1.3 Checklist before Upgrade

Before upgrading a Leap 42.1 Xen host to Leap 15:

You must remove any Python code from your xm domain configuration les.

It is recommended to capture the libvirt domain XML from all existing virtual machines
using virsh dumpxml DOMAIN_NAME DOMAIN_NAME.xml .

It is recommended to do a backup of /etc/xen/xend-config.sxp and /boot/grub/
menu.lst les to keep references of previous parameters used for Xen.

310 XL design openSUSE Leap 15.0

Note
Currently, live migrating virtual machines running on a Leap 42.1 Xen host to a Leap
15 Xen host is not supported. The xend and libxl toolstacks are not runtime-compatible.
Virtual machine downtime will be required to move the virtual machines.

B.2 Import Xen Domain Configuration into libvirt
xen2libvirt is a command line tool to import legacy Xen domain configuration into the lib-
virt virtualization library (see The Virtualization book for more information on libvirt).
xen2libvirt provides an easy way to import domains managed by the deprecated xm /xend tool
stack into the new libvirt /libxl tool stack. Several domains can be imported at once using
its --recursive mode

xen2libvirt is included in the xen-tools package. If needed, install it with

tux > sudo zypper install xen-tools

xen2libvirt general syntax is

xen2libvirt <options> /path/to/domain/config

where options can be:

-h , --help

Prints short information about xen2libvirt usage.

-c , --convert-only

Converts the domain configuration to the libvirt XML format, but does not do the import
to libvirt .

-r , --recursive

Converts and/or imports all domains configuration recursively, starting at the specified
path.

-f , --format

Specifies the format of the source domain configuration. Can be either xm , or sexpr (S-
expression format).

-v , --verbose

Prints more detailed information about the import process.

311 Import Xen Domain Configuration into libvirt openSUSE Leap 15.0

EXAMPLE B.1: CONVERTING XEN DOMAIN CONFIGURATION TO libvirt

Suppose you have a Xen domain managed with xm with the following configuration saved
in /etc/xen/sle12.xm :

kernel = "/boot/vmlinuz-2.6-xenU"
 memory = 128
 name = "SLE12"
 root = "/dev/hda1 ro"
 disk = ["file:/var/xen/sle12.img,hda1,w"]

Convert it to libvirt XML without importing it, and look at its content:

tux > sudo xen2libvirt -f xm -c /etc/xen/sle12.xm > /etc/libvirt/qemu/sles12.xml
 # cat /etc/libvirt/qemu/sles12.xml
 <domain type='xen'>
 <name>SLE12</name>
 <uuid>43e1863c-8116-469c-a253-83d8be09aa1d</uuid>
 <memory unit='KiB'>131072</memory>
 <currentMemory unit='KiB'>131072</currentMemory>
 <vcpu placement='static'>1</vcpu>
 <os>
 <type arch='x86_64' machine='xenpv'>linux</type>
 <kernel>/boot/vmlinuz-2.6-xenU</kernel>
 </os>
 <clock offset='utc' adjustment='reset'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <disk type='file' device='disk'>
 <driver name='file'/>
 <source file='/var/xen/sle12.img'/>
 <target dev='hda1' bus='xen'/>
 </disk>
 <console type='pty'>
 <target type='xen' port='0'/>
 </console>
 </devices>
 </domain>

To import the domain into libvirt , you can either run the same xen2libvirt command
without the -c option, or use the exported le /etc/libvirt/qemu/sles12.xml and
define a new Xen domain using virsh :

tux > sudo virsh define /etc/libvirt/qemu/sles12.xml

312 Import Xen Domain Configuration into libvirt openSUSE Leap 15.0

B.3 Differences between the xm and xl Applications

The purpose of this chapter is to list all differences between xm and xl applications. Generally,
xl is designed to be compatible with xm . Replacing xm with xl in custom scripts or tools is
usually sufficient.

You can also use the libvirt framework using the virsh command. In this documentation
only the rst OPTION for virsh will be shown. To get more help on this option do a:

virsh help OPTION

B.3.1 Notation Conventions

To easily understand the difference between xl and xm commands, the following notation is
used in this section:

TABLE B.1: NOTATION CONVENTIONS

Notation Meaning

(-) minus Option exists in xm , but xl does not include
it.

(+) plus Option exists in xl , but xm does not include
it.

B.3.2 New Global Options

TABLE B.2: NEW GLOBAL OPTIONS

Options Task

(+) -v Verbose, increase the verbosity of the output

(+) -N Dry run, do not actually execute the com-
mand

313 Differences between the xm and xl Applications openSUSE Leap 15.0

Options Task

(+) -f Force execution. xl will refuse to run some
commands if it detects that xend is also run-
ning, this option will force the execution of
those commands, even though it is unsafe

B.3.3 Unchanged Options

List of common options of xl and xm , and their libvirt equivalents.

TABLE B.3: COMMON OPTIONS

Options Task libvirt equivalent

destroy DOMAIN Immediately terminate the
domain.

virsh destroy

domid DOMAIN_NAME Convert a domain name to a
DOMAIN_ID .

virsh domid

domname DOMAIN_ID Convert a DOMAIN_ID to a
DOMAIN_NAME .

virsh domname

help Display the short help mes-
sage (that is, common com-
mands).

virsh help

pause DOMAIN_ID Pause a domain. When in a
paused state, the domain will
still consume allocated re-
sources such as memory, but
will not be eligible for sched-
uling by the Xen hypervisor.

virsh suspend

314 Unchanged Options openSUSE Leap 15.0

Options Task libvirt equivalent

unpause DOMAIN_ID Move a domain out of the
paused state. This will allow
a previously paused domain
to be eligible for scheduling
by the Xen hypervisor.

virsh resume

rename DOMAIN_ID NEW_DO-
MAIN_NAME

Change the domain name
of DOMAIN_ID to NEW_DO-
MAIN_NAME .

1. tux > virsh
 dumpxml DOMAINNAME >
 DOMXML

2. modify the domain's
name in DOMXML

3. tux > virsh
 undefine DOMAINNAME

4. tux > virsh
 define DOMAINNAME

sysrq DOMAIN <letter> Send a Magic System Request
to the domain, each type of
request is represented by
a different letter. It can be
used to send SysRq requests
to Linux guests, see https://

www.kernel.org/doc/html/lat-

est/admin-guide/sysrq.html

for more information. It re-
quires PV drivers to be in-
stalled in your guest OS.

virsh send-keys can send
Magic Sys Req only for KVM

vncviewer OPTIONS DOMAIN Attach to domain's VNC serv-
er, forking a vncviewer
process.

virt-viewer DOMAIN_ID

virsh VNCDISPLAY

315 Unchanged Options openSUSE Leap 15.0

https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html

Options Task libvirt equivalent

vcpu-set DOMAIN_ID
VCPUS

Enable the vcpu-count vir-
tual CPUs for the domain in
question. Like mem-set , this
command can only allocate
up to the maximum virtual
CPU count configured at boot
for the domain.

virsh setvcpus

vcpu-list DOMAIN_ID List VCPU information for
a specific domain. If no do-
main is specified, VCPU in-
formation for all domains
will be provided.

virsh vcpuinfo

vcpu-pin DOMAIN_ID
<VCPU|all> <CPUs|all>

Pin the VCPU to only run on
the specific CPUs. The key-
word all can be used to apply
the CPU list to all VCPUs in
the domain.

virsh vcpupin

dmesg [-c] Read the Xen message buer,
similar to dmesg on a Linux
system. The buer contains
informational, warning, and
error messages created dur-
ing Xen's boot process.

top Execute the xentop com-
mand, which provides real
time monitoring of domains.
xentop is a curses interface.

virsh nodecpustats

virsh nodememstats

316 Unchanged Options openSUSE Leap 15.0

Options Task libvirt equivalent

uptime [-s] DOMAIN Print the current uptime of
the domains running. With
the xl command, the DO-
MAIN argument is mandato-
ry.

debug-keys KEYS Send debug keys to Xen. It is
the same as pressing the Xen
conswitch (Ctrl-A by default)
three times and then pressing
"keys".

cpupool-migrate DOMAIN
CPU_POOL

Move a domain specified by
DOMAIN_ID or DOMAIN into
a CPU_POOL .

cpupool-destroy
CPU_POOL

Deactivate a cpu pool. This is
possible only if no domain is
active in the cpu-pool.

block-detach DOMAIN_ID
DevId

Detach a domain's virtual
block device. devid may be
the symbolic name or the nu-
meric device id given to the
device by Dom0. You will
need to run xl block-list
to determine that number.

virsh detach-disk

network-attach DO-
MAIN_ID NETWORK_DEVICE

Create a new network de-
vice in the domain specified
by DOMAIN_ID . network-de-
vice describes the device to
attach, using the same for-
mat as the vif string in the
domain configuration le

virsh attach-interface

virsh attach-device

317 Unchanged Options openSUSE Leap 15.0

Options Task libvirt equivalent

pci-attach DOMAIN
<BDF> [Virtual Slot]

Hotplug a new pass-through
PCI device to the specified
domain. BDF is the PCI Bus/
Device/Function of the phys-
ical device to be passed
through.

virsh attach-device

pci-list DOMAIN_ID List pass-through PCI devices
for a domain

getenforce Determine if the FLASK secu-
rity module is loaded and en-
forcing its policy.

setenforce <1|0|Enforc-
ing|Permissive>

Enable or disable enforcing
of the FLASK access controls.
The default is permissive and
can be changed using the
flask_enforcing option on the
hypervisor's command line.

B.3.4 Removed Options

List of xm options which are no more available with the XL tool stack and a replacement
solution if available.

B.3.4.1 Domain Management

The list of Domain management removed command and their replacement.

318 Removed Options openSUSE Leap 15.0

TABLE B.4: DOMAIN MANAGEMENT REMOVED OPTIONS

Domain Management Removed Options

Options Task Equivalent

(-) log Print the Xend log. This log le can be found in
/var/log/xend.log

(-) delete Remove a domain from Xend
domain management. The
list option shows the do-
main names

virsh undefine

(-) new Adds a domain to Xend do-
main management

virsh define

(-) start Start a Xend managed do-
main that was added using
the xm new command

virsh start

(-) dryrun Dry run - prints the resulting
configuration in SXP but does
not create the domain

xl -N

(-) reset Reset a domain virsh reset

(-) domstate Show domain state virsh domstate

(-) serve Proxy Xend XMLRPC over
stdio

(-) resume DOMAIN OP-
TIONS

Moves a domain out of the
suspended state and back in-
to memory

virsh resume

(-) suspend DOMAIN Suspend a domain to a state
le so that it can be later
resumed using the resume
subcommand. Similar to

virsh managedsave

virsh suspend

319 Removed Options openSUSE Leap 15.0

Domain Management Removed Options

Options Task Equivalent

the save subcommand al-
though the state le may not
be specified

B.3.4.2 USB Devices

USB options are not available with xl/libxl tool stack. virsh has the attach-device and
detach-device options but it does not work yet with USB .

TABLE B.5: USB DEVICES MANAGEMENT REMOVED OPTIONS

USB Devices Management Removed Options

Options Task

(-) usb-add Add a new USB physical bus to a domain

(-) usb-del Delete a USB physical bus from a domain

(-) usb-attach Attach a new USB physical bus to domain's
virtual port

(-) usb-detach Detach a USB physical bus from domain's
virtual port

(-) usb-list List domain's attachment state of all virtual
port

(-) usb-list-assignable-devices List all the assignable USB devices

(-) usb-hc-create Create a domain's new virtual USB host con-
troller

(-) usb-hc-destroy Destroy a domain's virtual USB host con-
troller

320 Removed Options openSUSE Leap 15.0

B.3.4.3 CPU Management

CPU management options has changed. New options are available, see: Section B.3.5.10, “xl
cpupool-*”

TABLE B.6: CPU MANAGEMENT REMOVED OPTIONS

CPU Management Removed Options

Options Task

(-) cpupool-new Adds a CPU pool to Xend CPU pool manage-
ment

(-) cpupool-start Starts a Xend CPU pool

(-) cpupool-delete Removes a CPU pool from Xend management

B.3.4.4 Other Options

TABLE B.7: OTHER OPTIONS

Other Removed Options

Options Task

(-) shell Launch an interactive shell

(-) change-vnc-passwd Change vnc password

(-) vtpm-list List virtual TPM devices

(-) block-configure Change block device configuration

B.3.5 Changed Options

B.3.5.1 create

xl create CONFIG_FILE OPTIONS VARS

321 Changed Options openSUSE Leap 15.0

Note: libvirt Equivalent:
virsh create

TABLE B.8: xl create CHANGED OPTIONS

create Changed Options

Options Task

(*) -f= FILE , --defconfig= FILE Use the given configuration le

TABLE B.9: xm create REMOVED OPTIONS

create Removed Options

Options Task

(-) -s , --skipdtd Skip DTD checking - skips checks on XML be-
fore creating

(-) -x , --xmldryrun XML dry run

(-) -F=FILE, --config=FILE Use the given SXP formatted configuration
script

(-) --path Search path for configuration scripts

(-) --help_config Print the available configuration variables
(vars) for the configuration script

(-) -n , --dryrun Dry run — prints the configuration in SXP

but does not create the domain

(-) -c , --console_autoconnect Connect to the console after the domain is
created

(-) -q , --quiet Quiet mode

(-) -p , --paused Leave the domain paused after it is created

322 Changed Options openSUSE Leap 15.0

TABLE B.10: xl create ADDED OPTIONS

create Added Options

Options Task

(+) -V , --vncviewer Attach to domain's VNC server, forking a
vncviewer process

(+) -A , --vncviewer-autopass Pass VNC password to vncviewer via stdin

B.3.5.2 console

xl console OPTIONS DOMAIN

Note: libvirt Equivalent
virsh console

TABLE B.11: xl console ADDED OPTIONS

console Added Option

Option Task

(+) -t [pv|serial] Connect to a PV console or connect to an em-
ulated serial console. PV consoles are the on-
ly consoles available for PV domains while
HVM domains can have both

B.3.5.3 info

xl info

TABLE B.12: xm info REMOVED OPTIONS

info Removed Options

Options Task

(-) -n , --numa Numa info

323 Changed Options openSUSE Leap 15.0

info Removed Options

Options Task

(-) -c , --config List Xend configuration parameters

B.3.5.4 dump-core

xl dump-core DOMAIN FILENAME

Note: libvirt Equivalent
virsh dump

TABLE B.13: xm dump-core REMOVED OPTIONS

dump-core Removed Options

Options Task

(-) -L , --live Dump core without pausing the domain

(-) -C , --crash Crash domain after dumping core

(-) -R , --reset Reset domain after dumping core

B.3.5.5 list

xl list options DOMAIN

Note: libvirt Equivalent
virsh list --all

324 Changed Options openSUSE Leap 15.0

TABLE B.14: xm list REMOVED OPTIONS

list Removed Options

Options Task

(-) -l , --long The output for xm list presents the data in
SXP format

(-) --state==STATE Output information for VMs in the specified
state

TABLE B.15: xl list ADDED OPTIONS

list Added Options

Options Task

(+) -Z , --context Also prints the security labels

(+) -v , --verbose Also prints the domain UUIDs, the shutdown
reason and security labels

B.3.5.6 mem-*

Note: libvirt Equivalent
virsh setmem

virsh setmaxmem

TABLE B.16: xl mem-* CHANGED OPTIONS

mem-* Changed Options

Options Task

mem-max DOMAIN_ID MEM Appending t for terabytes, g for gigabytes,
m for megabytes, k for kilobytes and b for
bytes. Specify the maximum amount of mem-
ory the domain can use.

325 Changed Options openSUSE Leap 15.0

mem-* Changed Options

Options Task

mem-set DOMAIN_ID MEM Set the domain's used memory using the bal-
loon driver

B.3.5.7 migrate

xl migrate OPTIONS DOMAIN HOST

Note: libvirt Equivalent
virsh migrate --live hvm-sles11-qcow2 xen+ CONNECTOR :// USER@ IP_ADDRESS /

TABLE B.17: xm migrate REMOVED OPTIONS

migrate Removed Options

Options Task

(-) -l , --live Use live migration. This will migrate the do-
main between hosts without shutting down
the domain

(-) -r , --resource Mbs Set maximum Mbs allowed for migrating the
domain

(-) -c , --change_home_server Change home server for managed domains

(-) --max_iters= MAX_ITERS Number of iterations before final suspend
(default:30)

(-) --max_factor= MAX_FACTOR Max amount of memory to transfer before fi-
nal suspend (default: 3*RAM).

(-) --min_remaining= MIN_REMAINING Number of dirty pages before final suspend
(default:50)

326 Changed Options openSUSE Leap 15.0

migrate Removed Options

Options Task

(-) --abort_if_busy Abort migration instead of doing final sus-
pend

(-) --log_progress Log progress of migration to xend.log

(-) -s , --ssl Use ssl connection for migration

TABLE B.18: xl migrate ADDED OPTIONS

migrate Added Options

Options Task

(+) -s SSHCOMMAND Use <sshcommand> instead of ssh

(+) -e On the new host, do not wait in the back-
ground (on <host>) for the death of the do-
main

(+) -C CONFIG Send <config> instead of the configuration
le used when creating the domain

B.3.5.8 Domain Management

xl reboot OPTIONS DOMAIN

Note: libvirt Equivalent
virsh reboot

TABLE B.19: xm reboot REMOVED OPTIONS

reboot Removed Options

Options Task

(-) -a , --all Reboot all domains

327 Changed Options openSUSE Leap 15.0

reboot Removed Options

Options Task

(-) -w , --wait Wait for reboot to complete before returning.
This may take a while, as all services in the
domain need to be shut down cleanly

TABLE B.20: xl reboot ADDED OPTIONS

reboot Added Options

Option Task

(+) -F Fallback to ACPI reset event for HVM guests
with no PV drivers

xl save OPTIONS DOMAIN CHECK_POINT_FILE CONFIG_FILE

Note: libvirt Equivalent
virsh save

TABLE B.21: xl save ADDED OPTIONS

save Added Options

Option Task

(+) -c Leave domain running after creating the
snapshot

xl restore OPTIONS CONFIG_FILE CHECK_POINT_FILE

Note: libvirt Equivalent
virsh restore

328 Changed Options openSUSE Leap 15.0

TABLE B.22: xl restore ADDED OPTIONS

restore Added Options

Options Task

(+) -p Do not unpause domain after restoring it

(+) -e Do not wait in the background for the death
of the domain on the new host

(+) -d Enable debug messages

(+) -V , --vncviewer Attach to domain's VNC server, forking a
vncviewer process

(+) -A , --vncviewer-autopass Pass VNC password to vncviewer via stdin

xl shutdown OPTIONS DOMAIN

Note: libvirt Equivalent
virsh shutdown

TABLE B.23: xm shutdown REMOVED OPTIONS

shutdown Removed Options

Options Task

(-) -w , --wait Wait for the domain to complete shutdown
before returning

(-) -a Shutdown all guest domains

(-) -R

(-) -H

329 Changed Options openSUSE Leap 15.0

TABLE B.24: xl shutdown ADDED OPTIONS

shutdown Added Options

Option Task

(+) -F If the guest does not support PV shutdown
control then fallback to sending an ACPI
power event

TABLE B.25: xl trigger CHANGED OPTIONS

trigger Changed Options

Option Task

 trigger DOMAIN <nmi|reset|init|pow-
er|sleep|s3resume> VCPU

Send a trigger to a domain. Only available
for HVM domains

B.3.5.9 xl sched-*

xl sched-credit OPTIONS

Note: libvirt Equivalent
virsh schedinfo

TABLE B.26: xm sched-credit REMOVED OPTIONS

sched-credit Removed Options

Options Task

-d DOMAIN , --domain= DOMAIN Domain

-w WEIGHT , --weight= WEIGHT A domain with a weight of 512 will get twice
as much CPU as a domain with a weight
of 256 on a contended host. Legal weights
range from 1 to 65535 and the default is 256

330 Changed Options openSUSE Leap 15.0

sched-credit Removed Options

Options Task

-c CAP , --cap= CAP The CAP optionally fixes the maximum
amount of CPU a domain can consume

TABLE B.27: xl sched-credit ADDED OPTIONS

sched-credit Added Options

Options Task

(+) -p CPUPOOL , --cpupool= CPUPOOL Restrict output to domains in the specified
cpupool

(+) -s , --schedparam Specify to list or set pool-wide scheduler pa-
rameters

(+) -t TSLICE , --tslice_ms= TSLICE Timeslice tells the scheduler how long to al-
low VMs to run before pre-empting

(+) -r RLIMIT , --ratelimit_us= RLIMIT Ratelimit attempts to limit the number of
schedules per second

xl sched-credit2 OPTIONS

Note: libvirt Status
virsh only supports credit scheduler, not credit2 scheduler

TABLE B.28: xm sched-credit2 REMOVED OPTIONS

sched-credit2 Removed Options

Options Task

-d DOMAIN , --domain= DOMAIN Domain

-w WEIGHT , --weight= WEIGHT Legal weights range from 1 to 65535 and the
default is 256

331 Changed Options openSUSE Leap 15.0

TABLE B.29: xl sched-credit2 ADDED OPTIONS

sched-credit2 Added Options

Option Task

(+) -p CPUPOOL , --cpupool= CPUPOOL Restrict output to domains in the specified
cpupool

xl sched-sedf OPTIONS

TABLE B.30: xm sched-sedf REMOVED OPTIONS

sched-sedf Removed Options

Options Task

-p PERIOD , --period= PERIOD The normal EDF scheduling usage in millisec-
onds

-s SLICE , --slice= SLICE The normal EDF scheduling usage in millisec-
onds

-l LATENCY , --latency= LATENCY Scaled period if domain is doing heavy I/O

-e EXTRA , --extra= EXTRA Flag for allowing domain to run in extra time
(0 or 1)

-w WEIGHT , --weight= WEIGHT Another way of setting CPU slice

TABLE B.31: xl sched-sedf ADDED OPTIONS

sched-sedf Added Options

Options Task

(+) -c CPUPOOL , --cpupool= CPUPOOL Restrict output to domains in the specified
cpupool

(+) -d DOMAIN , --domain= DOMAIN Domain

332 Changed Options openSUSE Leap 15.0

B.3.5.10 xl cpupool-*

xl cpupool-cpu-remove CPU_POOL <CPU nr>|node:<node nr>

xl cpupool-list [-c|--cpus] CPU_POOL

TABLE B.32: xm cpupool-list REMOVED OPTIONS

cpupool-* Removed Options

Option Task

(-) -l , --long Output all CPU pool details in SXP format

xl cpupool-cpu-add CPU_POOL cpu-nr|node:node-nr

xl cpupool-create OPTIONS CONFIG_FILE [Variable=Value ...]

TABLE B.33: xm cpupool-create REMOVED OPTIONS

cpupool-create Removed Options

Options Task

(-) -f FILE , --defconfig= FILE Use the given Python configuration script.
The configuration script is loaded after argu-
ments have been processed

(-) -n , --dryrun Dry run - prints the resulting configuration in
SXP but does not create the CPU pool

(-) --help_config Print the available configuration variables
(vars) for the configuration script

(-) --path= PATH Search path for configuration scripts. The
value of PATH is a colon-separated directory
list

(-) -F= FILE , --config= FILE CPU pool configuration to use (SXP)

B.3.5.11 PCI and Block Devices

xl pci-detach [-f] DOMAIN_ID <BDF>

333 Changed Options openSUSE Leap 15.0

Note: libvirt Equivalent
virsh detach-device

TABLE B.34: xl pci-detach ADDED OPTIONS

pci-detach Added Options

Option Task

(+) -f If -f is specified, xl is going to forcefully
remove the device even without guest's col-
laboration

TABLE B.35: xm block-list REMOVED OPTIONS

block-list Removed Options

Option Task

(-) -l , --long List virtual block devices for a domain

TABLE B.36: OTHER OPTIONS

Option libvirt equivalent

xl block-attach DOMAIN <disk-spec-
component(s)>

virsh attach-disk/attach-device

xl block-list DOMAIN_ID virsh domblklist

B.3.5.12 Network

TABLE B.37: NETWORK OPTIONS

Option libvirt equivalent

xl network-list DOMAIN(s) virsh domiflist

xl network-detach DOMAIN_ID devid|mac virsh detach-interface

334 Changed Options openSUSE Leap 15.0

Option libvirt equivalent

xl network-attach DOMAIN(s) virsh attach-interface/attach-device

TABLE B.38: xl network-attach REMOVED OPTIONS

Removed Options

Option Task

(-) -l , --long

B.3.6 New Options

TABLE B.39: NEW OPTIONS

Options Task

config-update DOMAIN CONFIG_FILE OP-
TIONS VARS

Update the saved configuration for a run-
ning domain. This has no immediate effect
but will be applied when the guest is next
restarted. This command is useful to ensure
that runtime modifications made to the guest
will be preserved when the guest is restarted

migrate-receive

sharing DOMAIN List count of shared pages.List specifically for
that domain. Otherwise, list for all domains

vm-list Prints information about guests. This list ex-
cludes information about service or auxiliary
domains such as Dom0 and stubdoms

cpupool-rename CPU_POOL NEWNAME Renames a cpu-pool to newname

cpupool-numa-split Splits up the machine into one cpu-pool per
numa node

335 New Options openSUSE Leap 15.0

Options Task

cd-insert DOMAIN <VirtualDevice>
<type:path>

Insert a CD-ROM into a guest domain's exist-
ing virtual CD drive. The virtual drive must
already exist but can be current empty

cd-eject DOMAIN <VirtualDevice> Eject a CD-ROM from a guest's virtual CD
drive. Only works with HVM domains

pci-assignable-list List all the assignable PCI devices. These
are devices in the system which are config-
ured to be available for pass-through and are
bound to a suitable PCI back-end driver in
Dom0 rather than a real driver

pci-assignable-add <BDF> Make the device at PCI Bus/Device/Function
BDF assignable to guests.This will bind the
device to the pciback driver

pci-assignable-remove OPTIONS
<BDF>

Make the device at PCI Bus/Device/Function
BDF assignable to guests. This will at least
unbind the device from pciback

loadpolicy POLICY_FILE Load FLASK policy from the given policy le.
The initial policy is provided to the hyper-
visor as a multiboot module; this command
allows runtime updates to the policy. Load-
ing new security policy will reset runtime
changes to device labels

B.4 External links
For more information on Xen tool stacks refer to the following online resources:

XL in Xen

XL in Xen 4.2 (http://wiki.xenproject.org/wiki/XL_in_Xen_4.2)

xl command

336 External links openSUSE Leap 15.0

http://wiki.xenproject.org/wiki/XL_in_Xen_4.2

XL (http://xenbits.xen.org/docs/unstable/man/xl.1.html) command line.

xl.cfg

xl.cfg (http://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html) domain configuration le
syntax.

xl disk

xl disk (https://xenbits.xen.org/docs/4.3-testing/misc/xl-disk-configuration.txt) configura-
tion option.

XL vs Xend

XL vs Xend (http://wiki.xenproject.org/wiki/XL_vs_Xend_Feature_Comparison) feature com-
parison.

BDF doc

BDF documentation (http://wiki.xen.org/wiki/Bus:Device.Function_%28BDF%29_Notation) .

libvirt

virsh (http://libvirt.org/virshcmdref.html) command.

B.5 Saving a Xen Guest Configuration in an xm
Compatible Format
Although xl is now the current toolkit for managing Xen guests (apart from the preferred
libvirt), you may need to export the guest configuration to the previously used xm format.
To do this, follow these steps:

1. First export the guest configuration to a le:

tux > virsh dumpxml guest_id > guest_cfg.xml

2. Then convert the configuration to the xm format:

tux > virsh domxml-to-native xen-xm guest_cfg.xml > guest_xm_cfg

337 Saving a Xen Guest Configuration in an xm Compatible Format openSUSE Leap 15.0

http://xenbits.xen.org/docs/unstable/man/xl.1.html
http://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html
https://xenbits.xen.org/docs/4.3-testing/misc/xl-disk-configuration.txt
http://wiki.xenproject.org/wiki/XL_vs_Xend_Feature_Comparison
http://wiki.xen.org/wiki/Bus:Device.Function_%28BDF%29_Notation
http://libvirt.org/virshcmdref.html

C GNU Licenses
This appendix contains the GNU Free Docu-
mentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent le format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary

formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the
rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general net-
work-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quanti-
ty, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

338 openSUSE Leap 15.0

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

339 openSUSE Leap 15.0

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/

copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute
 and/or modify this document
under the terms of the GNU Free
 Documentation License, Version 1.2
or any later version published by the Free
 Software Foundation;
with no Invariant Sections, no Front-Cover
 Texts, and no Back-Cover Texts.
A copy of the license is included in the
 section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST
 THEIR TITLES, with the
Front-Cover Texts being LIST, and with the
 Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

340 openSUSE Leap 15.0

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

	Virtualization Guide
	Contents
	About This Manual
	1. Available Documentation
	2. Feedback
	3. Documentation Conventions

	Part I. Introduction
	Chapter 1. Virtualization Technology
	1.1. Overview
	1.2. Virtualization Capabilities
	1.3. Virtualization Benefits
	1.4. Virtualization Modes
	1.5. I/O Virtualization

	Chapter 2. Introduction to Xen Virtualization
	2.1. Basic Components
	2.2. Xen Virtualization Architecture

	Chapter 3. Introduction to KVM Virtualization
	3.1. Basic Components
	3.2. KVM Virtualization Architecture

	Chapter 4. Introduction to Linux Containers
	Chapter 5. Virtualization Tools
	5.1. Virtualization Console Tools
	5.2. Virtualization GUI Tools

	Chapter 6. Installation of Virtualization Components
	6.1. Installing KVM
	6.2. Installing Xen
	6.3. Installing Containers
	6.4. Patterns
	6.5. Installing UEFI Support

	Part II. Managing Virtual Machines with libvirt
	Chapter 7. Starting and Stopping libvirtd
	Chapter 8. Guest Installation
	8.1. GUI-Based Guest Installation
	8.2. Installing from the Command Line with virt-install
	8.3. Advanced Guest Installation Scenarios
	8.3.1. Including Add-on Products in the Installation

	Chapter 9. Basic VM Guest Management
	9.1. Listing VM Guests
	9.1.1. Listing VM Guests with Virtual Machine Manager
	9.1.2. Listing VM Guests with virsh

	9.2. Accessing the VM Guest via Console
	9.2.1. Opening a Graphical Console
	9.2.1.1. Opening a Graphical Console with Virtual Machine Manager
	9.2.1.2. Opening a Graphical Console with virt-viewer

	9.2.2. Opening a Serial Console

	9.3. Changing a VM Guest's State: Start, Stop, Pause
	9.3.1. Changing a VM Guest's State with Virtual Machine Manager
	9.3.1.1. Automatically Starting a VM Guest

	9.3.2. Changing a VM Guest's State with virsh

	9.4. Saving and Restoring the State of a VM Guest
	9.4.1. Saving/Restoring with Virtual Machine Manager
	9.4.2. Saving and Restoring with virsh

	9.5. Creating and Managing Snapshots
	9.5.1. Terminology
	9.5.2. Creating and Managing Snapshots with Virtual Machine Manager
	9.5.2.1. Creating a Snapshot
	9.5.2.2. Deleting a Snapshot
	9.5.2.3. Starting a Snapshot

	9.5.3. Creating and Managing Snapshots with virsh
	9.5.3.1. Creating Internal Snapshots
	9.5.3.2. Creating External Snapshots
	9.5.3.3. Deleting a Snapshot
	9.5.3.4. Starting a Snapshot

	9.6. Deleting a VM Guest
	9.6.1. Deleting a VM Guest with Virtual Machine Manager
	9.6.2. Deleting a VM Guest with virsh

	9.7. Migrating VM Guests
	9.7.1. Migration Requirements
	9.7.2. Migrating with Virtual Machine Manager
	9.7.3. Migrating with virsh
	9.7.4. Step-by-Step Example
	9.7.4.1. Exporting the Storage
	9.7.4.2. Defining the Pool on the Target Hosts
	9.7.4.3. Creating the Volume
	9.7.4.4. Creating the VM Guest
	9.7.4.5. Migrate the VM Guest

	9.8. Monitoring
	9.8.1. Monitoring with Virtual Machine Manager
	9.8.2. Monitoring with virt-top
	9.8.3. Monitoring with kvm_stat

	Chapter 10. Connecting and Authorizing
	10.1. Authentication
	10.1.1. libvirtd Authentication
	10.1.1.1. Access Control for Unix Sockets with Permissions and Group Ownership
	10.1.1.2. Local Access Control for Unix Sockets with PolKit
	10.1.1.3. User name and Password Authentication with SASL

	10.1.2. VNC Authentication
	10.1.2.1. User name and Password Authentication with SASL
	10.1.2.2. Single Password Authentication

	10.2. Connecting to a VM Host Server
	10.2.1. “system” Access for Non-Privileged Users
	10.2.2. Managing Connections with Virtual Machine Manager

	10.3. Configuring Remote Connections
	10.3.1. Remote Tunnel over SSH (qemu+ssh or xen+ssh)
	10.3.2. Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls)
	10.3.2.1. Basic Concept
	10.3.2.2. Configuring the VM Host Server
	10.3.2.3. Configuring the Client and Testing the Setup
	10.3.2.4. Enabling VNC for TLS/SSL connections
	10.3.2.4.1. VNC over TLS/SSL: VM Host Server Configuration
	10.3.2.4.2. VNC over TLS/SSL: Client Configuration

	10.3.2.5. Restricting Access (Security Considerations)
	10.3.2.5.1. Restricting Access from the Server Side

	10.3.2.6. Central User Authentication with SASL for TLS Sockets
	10.3.2.7. Troubleshooting
	10.3.2.7.1. Virtual Machine Manager/virsh Cannot Connect to Server
	10.3.2.7.2. VNC Connection fails

	Chapter 11. Managing Storage
	11.1. Managing Storage with Virtual Machine Manager
	11.1.1. Adding a Storage Pool
	11.1.2. Managing Storage Pools
	11.1.2.1. Starting, Stopping and Deleting Pools
	11.1.2.2. Adding Volumes to a Storage Pool
	11.1.2.3. Deleting Volumes From a Storage Pool

	11.2. Managing Storage with virsh
	11.2.1. Listing Pools and Volumes
	11.2.2. Starting, Stopping and Deleting Pools
	11.2.3. Adding Volumes to a Storage Pool
	11.2.3.1. Cloning Existing Volumes

	11.2.4. Deleting Volumes from a Storage Pool
	11.2.5. Attaching Volumes to a VM Guest
	11.2.5.1. Hotplug or Persistent Change

	11.2.6. Detaching Volumes from a VM Guest

	11.3. Locking Disk Files and Block Devices with virtlockd
	11.3.1. Enable Locking
	11.3.2. Configure Locking
	11.3.2.1. Enabling an Indirect Lockspace
	11.3.2.2. Enable Locking on LVM or iSCSI Volumes

	11.4. Online Resizing of Guest Block Devices
	11.5. Sharing Directories between Host and Guests (File System Pass-Through)
	11.6. Using RADOS Block Devices with libvirt

	Chapter 12. Managing Networks
	12.1. Virtual Networks
	12.1.1. Managing Virtual Networks with Virtual Machine Manager
	12.1.1.1. Defining Virtual Networks
	12.1.1.2. Starting Virtual Networks
	12.1.1.3. Stopping Virtual Networks
	12.1.1.4. Deleting Virtual Networks
	12.1.1.5. Obtaining IP Addresses with nsswitch for NAT Networks (in KVM)

	12.1.2. Managing Virtual Networks with virsh
	12.1.2.1. Creating a Network
	12.1.2.2. Listing Networks
	12.1.2.3. Getting Details about a Network
	12.1.2.4. Starting a Network
	12.1.2.5. Stopping a Network
	12.1.2.6. Removing a Network

	12.2. Bridged Networking
	12.2.1. Managing Network Bridges with YaST
	12.2.1.1. Adding a Network Bridge
	12.2.1.2. Deleting a Network Bridge

	12.2.2. Managing Network Bridges from the Command Line
	12.2.2.1. Adding a Network Bridge
	12.2.2.2. Deleting a Network Bridge

	12.2.3. Using VLAN Interfaces

	Chapter 13. Configuring Virtual Machines
	13.1. Machine Setup
	13.1.1. Overview
	13.1.2. Performance
	13.1.3. Processor
	13.1.4. Memory
	13.1.5. Boot Options

	13.2. Storage
	13.3. Controllers
	13.4. Networking
	13.5. Enabling Seamless and Synchronized Mouse Pointer Movement
	13.6. Adding a CD/DVD-ROM Device with Virtual Machine Manager
	13.7. Adding a Floppy Device with Virtual Machine Manager
	13.8. Ejecting and Changing Floppy or CD/DVD-ROM Media with Virtual Machine Manager
	13.9. Changing the Machine Type with virsh
	13.10. Assigning a Host PCI Device to a VM Guest
	13.10.1. Adding a PCI Device with Virtual Machine Manager
	13.10.2. Adding a PCI Device with virsh

	13.11. Assigning a Host USB Device to a VM Guest
	13.11.1. Adding a USB Device with Virtual Machine Manager
	13.11.2. Adding a USB Device with virsh

	13.12. Adding SR-IOV Devices
	13.12.1. Requirements
	13.12.2. Loading and Configuring the SR-IOV Host Drivers
	13.12.3. Adding a VF Network Device to an Existing VM Guest
	13.12.4. Dynamic Allocation of VFs from a Pool
	13.12.4.1. Defining Network with Pool of VFs on VM Host Server
	13.12.4.2. Configuring VM Guest to Use VF from the Pool

	13.13. Using Macvtap to Share VM Host Server Network Interfaces

	Part III. Hypervisor-Independent Features
	Chapter 14. Disk Cache Modes
	14.1. Disk Interface Cache Modes
	14.2. Description of Cache Modes
	14.3. Data Integrity Implications of Cache Modes
	14.4. Performance Implications of Cache Modes
	14.5. Effect of Cache Modes on Live Migration

	Chapter 15. VM Guest Clock Settings
	15.1. KVM: Using kvm_clock
	15.1.1. Other Timekeeping Methods

	15.2. Xen Virtual Machine Clock Settings

	Chapter 16. libguestfs
	16.1. VM Guest Manipulation Overview
	16.1.1. VM Guest Manipulation Risk
	16.1.2. libguestfs Design

	16.2. Package Installation
	16.3. Guestfs Tools
	16.3.1. Modifying Virtual Machines
	16.3.2. Supported File Systems and Disk Images
	16.3.3. virt-rescue
	16.3.4. virt-resize
	16.3.5. Other virt-* Tools
	16.3.5.1. virt-filesystems
	16.3.5.2. virt-ls
	16.3.5.3. virt-cat
	16.3.5.4. virt-df
	16.3.5.5. virt-edit
	16.3.5.6. virt-tar-in/out
	16.3.5.7. virt-copy-in/out
	16.3.5.8. virt-log

	16.3.6. guestfish
	16.3.7. Converting a Physical Machine into a KVM Guest

	16.4. Troubleshooting
	16.4.1. Btrfs-related Problems
	16.4.2. Environment
	16.4.3. libguestfs-test-tool

	16.5. External References

	Part IV. Managing Virtual Machines with Xen
	Chapter 17. Setting Up a Virtual Machine Host
	17.1. Best Practices and Suggestions
	17.2. Managing Dom0 Memory
	17.2.1. Setting Dom0 Memory Allocation

	17.3. Network Card in Fully Virtualized Guests
	17.4. Starting the Virtual Machine Host
	17.5. PCI Pass-Through
	17.5.1. Configuring the Hypervisor for PCI Pass-Through
	17.5.1.1. Dynamic Assignment with xl

	17.5.2. Assigning PCI Devices to VM Guest Systems
	17.5.3. VGA Pass-Through
	17.5.4. Troubleshooting
	17.5.5. For More Information

	17.6. USB Pass-Through
	17.6.1. Identify the USB Device
	17.6.2. Emulated USB Device
	17.6.3. Paravirtualized PVUSB

	Chapter 18. Virtual Networking
	18.1. Network Devices for Guest Systems
	18.2. Host-Based Routing in Xen
	18.3. Creating a Masqueraded Network Setup
	18.4. Special Configurations
	18.4.1. Bandwidth Throttling in Virtual Networks
	18.4.2. Monitoring the Network Traffic

	Chapter 19. Managing a Virtualization Environment
	19.1. XL—Xen Management Tool
	19.1.1. Guest Domain Configuration File

	19.2. Automatic Start of Guest Domains
	19.3. Event Actions
	19.4. Time Stamp Counter
	19.5. Saving Virtual Machines
	19.6. Restoring Virtual Machines
	19.7. Virtual Machine States

	Chapter 20. Block Devices in Xen
	20.1. Mapping Physical Storage to Virtual Disks
	20.2. Mapping Network Storage to Virtual Disk
	20.3. File-Backed Virtual Disks and Loopback Devices
	20.4. Resizing Block Devices
	20.5. Scripts for Managing Advanced Storage Scenarios

	Chapter 21. Virtualization: Configuration Options and Settings
	21.1. Virtual CD Readers
	21.1.1. Virtual CD Readers on Paravirtual Machines
	21.1.2. Virtual CD Readers on Fully Virtual Machines
	21.1.3. Adding Virtual CD Readers
	21.1.4. Removing Virtual CD Readers

	21.2. Remote Access Methods
	21.3. VNC Viewer
	21.3.1. Assigning VNC Viewer Port Numbers to Virtual Machines
	21.3.2. Using SDL instead of a VNC Viewer

	21.4. Virtual Keyboards
	21.5. Dedicating CPU Resources
	21.5.1. Dom0
	21.5.2. VM Guests

	21.6. HVM Features
	21.6.1. Specify Boot Device on Boot
	21.6.2. Changing CPUIDs for Guests
	21.6.3. Increasing the Number of PCI-IRQs

	Chapter 22. Administrative Tasks
	22.1. The Boot Loader Program
	22.2. Sparse Image Files and Disk Space
	22.3. Migrating Xen VM Guest Systems
	22.3.1. Preparing Block Devices for Migrations
	22.3.2. Migrating VM Guest Systems

	22.4. Monitoring Xen
	22.4.1. Monitor Xen with xentop
	22.4.2. Additional Tools

	22.5. Providing Host Information for VM Guest Systems

	Chapter 23. XenStore: Configuration Database Shared between Domains
	23.1. Introduction
	23.2. File System Interface
	23.2.1. XenStore Commands
	23.2.2. /vm
	23.2.3. /local/domain/<domid>

	Chapter 24. Xen as a High-Availability Virtualization Host
	24.1. Xen HA with Remote Storage
	24.2. Xen HA with Local Storage
	24.3. Xen HA and Private Bridges

	Part V. Managing Virtual Machines with QEMU
	Chapter 25. QEMU Overview
	Chapter 26. Setting Up a KVM VM Host Server
	26.1. CPU Support for Virtualization
	26.2. Required Software
	26.3. KVM Host-Specific Features
	26.3.1. Using the Host Storage with virtio-scsi
	26.3.1.1. virtio-scsi Usage

	26.3.2. Accelerated Networking with vhost-net
	26.3.3. Scaling Network Performance with Multiqueue virtio-net
	26.3.4. VFIO: Secure Direct Access to Devices
	26.3.5. VirtFS: Sharing Directories between Host and Guests
	26.3.5.1. Implementation

	26.3.6. KSM: Sharing Memory Pages between Guests

	Chapter 27. Guest Installation
	27.1. Basic Installation with qemu-system-ARCH
	27.2. Managing Disk Images with qemu-img
	27.2.1. General Information on qemu-img Invocation
	27.2.2. Creating, Converting and Checking Disk Images
	27.2.2.1. qemu-img create
	27.2.2.2. qemu-img convert
	27.2.2.3. qemu-img check
	27.2.2.4. Increasing the Size of an Existing Disk Image
	27.2.2.5. Advanced Options for the qcow2 File Format
	27.2.2.5.1. Choosing the Right Cache Size
	27.2.2.5.2. Configuring the Cache Size
	27.2.2.5.3. Reducing the Memory Usage

	27.2.3. Managing Snapshots of Virtual Machines with qemu-img
	27.2.3.1. Listing Existing Snapshots
	27.2.3.2. Creating Snapshots of a Powered-Off Virtual Machine
	27.2.3.3. Deleting Snapshots

	27.2.4. Manipulate Disk Images Effectively
	27.2.4.1. Base and Derived Images
	27.2.4.2. Creating Derived Images
	27.2.4.3. Rebasing Derived Images
	27.2.4.4. Mounting an Image on a VM Host Server

	Chapter 28. Running Virtual Machines with qemu-system-ARCH
	28.1. Basic qemu-system-ARCH Invocation
	28.2. General qemu-system-ARCH Options
	28.2.1. Basic Virtual Hardware
	28.2.1.1. Machine Type
	28.2.1.2. CPU Model
	28.2.1.3. Other Basics Options

	28.2.2. Storing and Reading Configuration of Virtual Devices
	28.2.3. Guest Real-Time Clock

	28.3. Using Devices in QEMU
	28.3.1. Block Devices
	28.3.1.1. Freeing Unused Guest Disk Space
	28.3.1.2. IOThreads
	28.3.1.3. Bio-Based I/O Path for virtio-blk
	28.3.1.4. Accessing iSCSI Resources Directly
	28.3.1.5. Using RADOS Block Devices with QEMU

	28.3.2. Graphic Devices and Display Options
	28.3.2.1. Defining Video Cards
	28.3.2.2. Display Options

	28.3.3. USB Devices
	28.3.3.1. Emulating USB Devices in VM Guest

	28.3.4. Character Devices

	28.4. Networking in QEMU
	28.4.1. Defining a Network Interface Card
	28.4.2. User-Mode Networking
	28.4.2.1. Command Line Examples

	28.4.3. Bridged Networking
	28.4.3.1. Connecting to a Bridge Manually
	28.4.3.2. Connecting to a Bridge with qemu-bridge-helper

	28.5. Viewing a VM Guest with VNC
	28.5.1. Secure VNC Connections

	Chapter 29. Virtual Machine Administration Using QEMU Monitor
	29.1. Accessing Monitor Console
	29.2. Getting Information about the Guest System
	29.3. Changing VNC Password
	29.4. Managing Devices
	29.5. Controlling Keyboard and Mouse
	29.6. Changing Available Memory
	29.7. Dumping Virtual Machine Memory
	29.8. Managing Virtual Machine Snapshots
	29.9. Suspending and Resuming Virtual Machine Execution
	29.10. Live Migration
	29.11. QMP - QEMU Machine Protocol
	29.11.1. Access QMP via Standard Input/Output
	29.11.2. Access QMP via Telnet
	29.11.3. Access QMP via Unix Socket
	29.11.4. Access QMP via libvirt's virsh Command

	Part VI. Managing Virtual Machines with LXC
	Chapter 30. Linux Containers
	30.1. Setting Up LXC Distribution Containers
	30.2. Setting Up LXC Application Containers
	30.3. Securing a Container Using AppArmor
	30.4. Differences between the libvirt LXC Driver and LXC
	30.5. Sharing Namespaces across Containers
	30.6. For More Information

	Chapter 31. Migration from LXC to libvirt-lxc
	31.1. Host Migration
	31.2. Container Migration
	31.3. Starting the Container

	Glossary
	Appendix A. Appendix
	A.1. Generating x509 Client/Server Certificates

	Appendix B. XM, XL Toolstacks and Libvirt framework
	B.1. Xen Toolstacks
	B.1.1. Upgrading from xend/xm to xl/libxl
	B.1.2. XL design
	B.1.3. Checklist before Upgrade

	B.2. Import Xen Domain Configuration into libvirt
	B.3. Differences between the xm and xl Applications
	B.3.1. Notation Conventions
	B.3.2. New Global Options
	B.3.3. Unchanged Options
	B.3.4. Removed Options
	B.3.4.1. Domain Management
	B.3.4.2. USB Devices
	B.3.4.3. CPU Management
	B.3.4.4. Other Options

	B.3.5. Changed Options
	B.3.5.1. create
	B.3.5.2. console
	B.3.5.3. info
	B.3.5.4. dump-core
	B.3.5.5. list
	B.3.5.6. mem-*
	B.3.5.7. migrate
	B.3.5.8. Domain Management
	B.3.5.9. xl sched-*
	B.3.5.10. xl cpupool-*
	B.3.5.11. PCI and Block Devices
	B.3.5.12. Network

	B.3.6. New Options

	B.4. External links
	B.5. Saving a Xen Guest Configuration in an xm Compatible Format

	Appendix C. GNU Licenses
	C.1. GNU Free Documentation License

