
Pacemaker 1.1

Configuration Explained
An A-Z guide to Pacemaker's Configuration Options

Andrew Beekhof

Configuration Explained

Pacemaker 1.1 Configuration Explained
An A-Z guide to Pacemaker's Configuration Options
Edition 10

Author Andrew Beekhof andrew@beekhof.net
Translator Dan Frîncu df.cluster@gmail.com

Philipp Marek philipp.marek@linbit.com
Tanja Roth taroth@suse.com
Lars Marowsky-Bree lmb@suse.com
Yan Gao ygao@suse.com
Thomas Schraitle toms@suse.com
Dejan Muhamedagic dmuhamedagic@suse.com

Copyright © 2009-2017 Andrew Beekhof.

The text of and illustrations in this document are licensed under version 4.0 or later of the Creative
Commons Attribution-ShareAlike International Public License ("CC-BY-SA")1.

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide
the URL for the original version.

In addition to the requirements of this license, the following activities are looked upon favorably:
1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email

notification to the authors of your intent to redistribute at least thirty days before your manuscript
or media freeze, to give the authors time to provide updated documents. This notification should
describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or
else described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy
of any hardcopy or CD-ROM expression of the author(s) work.

The purpose of this document is to definitively explain the concepts used to configure Pacemaker.
To achieve this, it will focus exclusively on the XML syntax used to configure Pacemaker's Cluster
Information Base (CIB).

1 An explanation of CC-BY-SA is available at https://creativecommons.org/licenses/by-sa/4.0/

mailto:andrew@beekhof.net
mailto:df.cluster@gmail.com
mailto:philipp.marek@linbit.com
mailto:taroth@suse.com
mailto:lmb@suse.com
mailto:ygao@suse.com
mailto:toms@suse.com
mailto:dmuhamedagic@suse.com
https://creativecommons.org/licenses/by-sa/4.0/

iii

Table of Contents
Preface xvii

1. Document Conventions ... xvii
1.1. Typographic Conventions ... xvii
1.2. Pull-quote Conventions .. xviii
1.3. Notes and Warnings ... xix

2. We Need Feedback! .. xix

1. Read-Me-First 1
1.1. The Scope of this Document ... 1
1.2. What Is Pacemaker? ... 1
1.3. Pacemaker Architecture .. 2

1.3.1. Internal Components .. 3
1.4. Types of Pacemaker Clusters .. 4

2. Configuration Basics 7
2.1. Configuration Layout ... 7
2.2. The Current State of the Cluster .. 8
2.3. How Should the Configuration be Updated? ... 9

2.3.1. Editing the CIB Using XML ... 9
2.3.2. Quickly Deleting Part of the Configuration .. 10
2.3.3. Updating the Configuration Without Using XML .. 10

2.4. Making Configuration Changes in a Sandbox ... 11
2.5. Testing Your Configuration Changes .. 12

2.5.1. Small Cluster Transition .. 13
2.5.2. Complex Cluster Transition ... 14

2.6. Do I Need to Update the Configuration on All Cluster Nodes? 14

3. Cluster-Wide Configuration 17
3.1. CIB Properties .. 17

3.1.1. Working with CIB Properties ... 18
3.2. Cluster Options ... 18

3.2.1. Querying and Setting Cluster Options .. 21
3.2.2. When Options are Listed More Than Once .. 22

4. Cluster Nodes 23
4.1. Defining a Cluster Node .. 23
4.2. Where Pacemaker Gets the Node Name ... 23
4.3. Node Attributes ... 24
4.4. Managing Nodes in a Corosync-Based Cluster ... 24

4.4.1. Adding a New Corosync Node .. 24
4.4.2. Removing a Corosync Node ... 25
4.4.3. Replacing a Corosync Node ... 25

4.5. Managing Nodes in a Heartbeat-based Cluster ... 25
4.5.1. Adding a New Heartbeat Node ... 25
4.5.2. Removing a Heartbeat Node ... 26
4.5.3. Replacing a Heartbeat Node ... 26

5. Cluster Resources 27
5.1. What is a Cluster Resource? ... 27
5.2. Resource Classes ... 27

5.2.1. Open Cluster Framework .. 28
5.2.2. Linux Standard Base .. 28
5.2.3. Systemd ... 29
5.2.4. Upstart ... 29

Configuration Explained

iv

5.2.5. System Services .. 30
5.2.6. STONITH ... 30
5.2.7. Nagios Plugins ... 30

5.3. Resource Properties .. 31
5.4. Resource Options ... 31

5.4.1. Resource Meta-Attributes .. 31
5.4.2. Setting Global Defaults for Resource Meta-Attributes ... 34
5.4.3. Resource Instance Attributes .. 34

5.5. Resource Operations .. 36
5.5.1. Monitoring Resources for Failure ... 37
5.5.2. Monitoring Resources When Administration is Disabled 38
5.5.3. Setting Global Defaults for Operations ... 38
5.5.4. When Implicit Operations Take a Long Time .. 38
5.5.5. Multiple Monitor Operations .. 39
5.5.6. Disabling a Monitor Operation ... 39

6. Resource Constraints 41
6.1. Scores .. 41

6.1.1. Infinity Math ... 41
6.2. Deciding Which Nodes a Resource Can Run On .. 42

6.2.1. Location Properties ... 42
6.2.2. Asymmetrical "Opt-In" Clusters ... 43
6.2.3. Symmetrical "Opt-Out" Clusters ... 44
6.2.4. What if Two Nodes Have the Same Score ... 44

6.3. Specifying the Order in which Resources Should Start/Stop .. 44
6.3.1. Ordering Properties .. 45
6.3.2. Optional and mandatory ordering .. 45

6.4. Placing Resources Relative to other Resources .. 46
6.4.1. Colocation Properties ... 46
6.4.2. Mandatory Placement ... 47
6.4.3. Advisory Placement .. 47
6.4.4. Colocation by Node Attribute .. 48

6.5. Resource Sets .. 48
6.6. Ordering Sets of Resources .. 49

6.6.1. Ordered Set ... 49
6.6.2. Ordering Multiple Sets .. 50
6.6.3. Resource Set OR Logic .. 51

6.7. Colocating Sets of Resources .. 52

7. Alerts 55
7.1. Alert Agents .. 55
7.2. Alert Recipients ... 55
7.3. Alert Meta-Attributes .. 56
7.4. Alert Instance Attributes .. 56
7.5. Alert Filters ... 57
7.6. Using the Sample Alert Agents .. 58
7.7. Writing an Alert Agent ... 58

8. Rules 61
8.1. Rule Properties ... 61
8.2. Node Attribute Expressions ... 62
8.3. Time- and Date-Based Expressions ... 63

8.3.1. Date Specifications ... 64
8.3.2. Durations ... 64
8.3.3. Sample Time-Based Expressions .. 64

v

8.4. Using Rules to Determine Resource Location ... 66
8.4.1. Location Rules Based on Other Node Properties ... 66
8.4.2. Using score-attribute Instead of score ... 67

8.5. Using Rules to Control Resource Options .. 67
8.6. Using Rules to Control Cluster Options .. 68
8.7. Ensuring Time-Based Rules Take Effect .. 69

9. Advanced Configuration 71
9.1. Connecting from a Remote Machine .. 71
9.2. Specifying When Recurring Actions are Performed ... 72
9.3. Handling Resource Failure .. 72

9.3.1. Failure Counts .. 72
9.3.2. Failure Response ... 73

9.4. Moving Resources .. 74
9.4.1. Moving Resources Manually ... 74
9.4.2. Moving Resources Due to Connectivity Changes ... 76
9.4.3. Migrating Resources ... 79

9.5. Tracking Node Health ... 80
9.5.1. Node Health Attributes ... 80
9.5.2. Node Health Strategy ... 80
9.5.3. Measuring Node Health .. 81

9.6. Reloading Services After a Definition Change ... 81

10. Advanced Resource Types 83
10.1. Groups - A Syntactic Shortcut .. 83

10.1.1. Group Properties .. 84
10.1.2. Group Options .. 84
10.1.3. Group Instance Attributes ... 85
10.1.4. Group Contents .. 85
10.1.5. Group Constraints .. 85
10.1.6. Group Stickiness .. 85

10.2. Clones - Resources That Get Active on Multiple Hosts .. 85
10.2.1. Clone Properties ... 86
10.2.2. Clone Options .. 86
10.2.3. Clone Instance Attributes .. 86
10.2.4. Clone Contents .. 86
10.2.5. Clone Constraints ... 87
10.2.6. Clone Stickiness ... 87
10.2.7. Clone Resource Agent Requirements .. 88

10.3. Multi-state - Resources That Have Multiple Modes .. 90
10.3.1. Multi-state Properties .. 90
10.3.2. Multi-state Options .. 90
10.3.3. Multi-state Instance Attributes ... 90
10.3.4. Multi-state Contents .. 90
10.3.5. Monitoring Multi-State Resources .. 91
10.3.6. Multi-state Constraints .. 91
10.3.7. Multi-state Stickiness .. 93
10.3.8. Which Resource Instance is Promoted .. 93
10.3.9. Requirements for Multi-state Resource Agents ... 94

10.4. Bundles - Isolated Environments .. 98
10.4.1. Bundle Properties ... 99
10.4.2. Docker Properties ... 99
10.4.3. rkt Properties .. 100
10.4.4. Bundle Network Properties .. 100
10.4.5. Bundle Storage Properties .. 102

Configuration Explained

vi

10.4.6. Bundle Primitive ... 103
10.4.7. Bundle Node Attributes ... 103
10.4.8. Bundle Meta-Attributes .. 104
10.4.9. Limitations of Bundles ... 104

11. Reusing Parts of the Configuration 105
11.1. Reusing Resource Definitions .. 105

11.1.1. Configuring Resources with Templates .. 105
11.1.2. Using Templates in Constraints ... 107
11.1.3. Using Templates in Resource Sets .. 107

11.2. Reusing Rules, Options and Sets of Operations .. 108
11.3. Tagging Configuration Elements ... 109

11.3.1. Configuring Tags .. 109
11.3.2. Using Tags in Constraints and Resource Sets .. 110

12. Utilization and Placement Strategy 111
12.1. Utilization attributes ... 111
12.2. Placement Strategy ... 112
12.3. Allocation Details ... 113

12.3.1. Which node is preferred to get consumed first when allocating resources? 113
12.3.2. Which node has more free capacity? ... 113
12.3.3. Which resource is preferred to be assigned first? ... 113

12.4. Limitations and Workarounds ... 114

13. STONITH 115
13.1. What Is STONITH? ... 115
13.2. What STONITH Device Should You Use? .. 115
13.3. Special Treatment of STONITH Resources ... 115
13.4. Unfencing .. 120
13.5. Configuring STONITH .. 120

13.5.1. Example STONITH Configuration .. 121
13.6. Advanced STONITH Configurations ... 123

13.6.1. Example Dual-Layer, Dual-Device Fencing Topologies 124
13.7. Remapping Reboots .. 130

14. Status — Here be dragons 131
14.1. Node Status .. 131
14.2. Transient Node Attributes .. 132
14.3. Operation History .. 132

14.3.1. Simple Operation History Example .. 134
14.3.2. Complex Operation History Example ... 135

15. Multi-Site Clusters and Tickets 137
15.1. Challenges for Multi-Site Clusters .. 137
15.2. Conceptual Overview ... 137

15.2.1. Ticket ... 137
15.2.2. Dead Man Dependency .. 138
15.2.3. Cluster Ticket Registry .. 138
15.2.4. Configuration Replication .. 138

15.3. Configuring Ticket Dependencies ... 139
15.4. Managing Multi-Site Clusters .. 140

15.4.1. Granting and Revoking Tickets Manually ... 140
15.4.2. Granting and Revoking Tickets via a Cluster Ticket Registry 140
15.4.3. General Management of Tickets .. 141

15.5. For more information ... 142

A. FAQ 143

vii

Frequently Asked Questions ... 143

B. More About OCF Resource Agents 145
B.1. Location of Custom Scripts ... 145
B.2. Actions ... 145
B.3. How are OCF Return Codes Interpreted? .. 146
B.4. OCF Return Codes ... 146

C. Installing 149
C.1. Installing the Software ... 149
C.2. Enabling Pacemaker ... 149

C.2.1. Enabling Pacemaker For Corosync 2.x ... 149
C.2.2. Enabling Pacemaker For Corosync 1.x ... 150
C.2.3. Enabling Pacemaker For Heartbeat .. 151

D. Upgrading 153
D.1. Upgrading Cluster Software .. 153

D.1.1. Complete Cluster Shutdown ... 153
D.1.2. Rolling (node by node) ... 154
D.1.3. Detach and Reattach ... 155

D.2. Upgrading the Configuration .. 156
D.3. What Changed in 1.0 .. 158

D.3.1. New .. 158
D.3.2. Changed .. 159
D.3.3. Removed ... 160

E. Init Script LSB Compliance 161

F. Sample Configurations 163
F.1. Empty ... 163
F.2. Simple .. 163
F.3. Advanced Configuration .. 164

G. Further Reading 167

H. Revision History 169

Index 171

viii

ix

List of Figures
1.1. The Pacemaker Stack ... 3
1.2. Internal Components ... 3
1.3. Active/Passive Redundancy ... 4
1.4. Shared Failover .. 5
1.5. N to N Redundancy .. 5
6.1. Visual representation of the four resources' start order for the above constraints 49
6.2. Visual representation of the start order for two ordered sets of unordered resources 50
6.3. Visual representation of the start order for the three sets defined above 51
6.4. Visual representation the above example (resources to the left are placed first) 54

x

xi

List of Tables
3.1. CIB Properties .. 17
3.2. Cluster Options ... 18
5.1. Properties of a Primitive Resource ... 31
5.2. Meta-attributes of a Primitive Resource .. 32
5.3. Properties of an Operation .. 36
6.1. Properties of a rsc_location Constraint ... 42
6.2. Properties of a rsc_order Constraint ... 45
6.3. Properties of a rsc_colocation Constraint ... 46
6.4. Properties of a resource_set .. 48
7.1. Meta-Attributes of an Alert ... 56
7.2. Environment variables passed to alert agents ... 58
8.1. Properties of a Rule .. 61
8.2. Properties of an Expression .. 62
8.3. Built-in node attributes ... 62
8.4. Properties of a Date Expression .. 63
8.5. Properties of a Date Specification .. 64
9.1. Environment Variables Used to Connect to Remote Instances of the CIB 71
9.2. Extra top-level CIB properties for remote access .. 72
9.3. Common Options for a ping Resource ... 77
9.4. Allowed Values for Node Health Attributes ... 80
9.5. Node Health Strategies ... 80
10.1. Properties of a Group Resource .. 84
10.2. Properties of a Clone Resource ... 86
10.3. Clone-specific configuration options ... 86
10.4. Environment variables supplied with Clone notify actions ... 88
10.5. Properties of a Multi-State Resource .. 90
10.6. Multi-state-specific resource configuration options ... 90
10.7. Additional colocation constraint options for multi-state resources .. 92
10.8. Additional colocation set options relevant to multi-state resources .. 92
10.9. Additional ordered set options relevant to multi-state resources ... 93
10.10. Role implications of OCF return codes ... 94
10.11. Environment variables supplied with multi-state notify actions .. 94
10.12. Properties of a Bundle ... 99
10.13. Properties of a Bundle’s Docker Element .. 99
10.14. Properties of a Bundle’s rkt Element .. 100
10.15. Properties of a Bundle’s Network Element .. 100
10.16. Properties of a Bundle’s Port-Mapping Element .. 101
10.17. Properties of a Bundle’s Storage-Mapping Element ... 102
13.1. Additional Properties of Fencing Resources .. 116
13.2. Properties of Fencing Levels .. 124
14.1. Authoritative Sources for State Information ... 131
14.2. Node Status Fields .. 131
14.3. Contents of an lrm_rsc_op job .. 133
B.1. Required Actions for OCF Agents .. 145
B.2. Optional Actions for OCF Resource Agents .. 146
B.3. Types of recovery performed by the cluster .. 146
B.4. OCF Return Codes and their Recovery Types .. 146
D.1. Upgrade Methods ... 153
D.2. Version Compatibility Table ... 155

xii

xiii

List of Examples
2.1. An empty configuration ... 7
2.2. Sample output from crm_mon ... 8
2.3. Sample output from crm_mon -n ... 8
2.4. Safely using an editor to modify the cluster configuration .. 9
2.5. Safely using an editor to modify only the resources section ... 10
2.6. Searching for STONITH-related configuration items .. 10
2.7. Creating and displaying the active sandbox .. 11
2.8. Use sandbox to make multiple changes all at once, discard them, and verify real
configuration is untouched .. 11
3.1. Attributes set for a cib object ... 18
3.2. Deleting an option that is listed twice ... 22
4.1. Example Heartbeat cluster node entry ... 23
4.2. Example Corosync cluster node entry .. 23
4.3. Result of using crm_attribute to specify which kernel pcmk-1 is running 24
5.1. A system resource definition .. 31
5.2. An OCF resource definition ... 31
5.3. An LSB resource with cluster options ... 34
5.4. An example OCF resource with instance attributes ... 34
5.5. Displaying the metadata for the Dummy resource agent template .. 35
5.6. An OCF resource with a recurring health check .. 36
5.7. An OCF resource with custom timeouts for its implicit actions .. 38
5.8. An OCF resource with two recurring health checks, performing different levels of checks
specified via OCF_CHECK_LEVEL. .. 39
5.9. Example of an OCF resource with a disabled health check ... 39
6.1. Opt-in location constraints for two resources .. 43
6.2. Opt-out location constraints for two resources .. 44
6.3. Constraints where a resource prefers two nodes equally ... 44
6.4. Optional and mandatory ordering constraints .. 46
6.5. Mandatory colocation constraint for two resources .. 47
6.6. Mandatory anti-colocation constraint for two resources .. 47
6.7. Advisory colocation constraint for two resources ... 48
6.8. A set of 3 resources ... 48
6.9. A chain of ordered resources .. 49
6.10. A chain of ordered resources expressed as a set ... 49
6.11. Ordered sets of unordered resources ... 50
6.12. Advanced use of set ordering - Three ordered sets, two of which are internally unordered 50
6.13. Resource Set "OR" logic: Three ordered sets, where the first set is internally unordered
with "OR" logic .. 51
6.14. Chain of colocated resources .. 52
6.15. Equivalent colocation chain expressed using resource_set ... 52
6.16. Using colocated sets to specify a common peer ... 53
6.17. Colocation chain in which the members of the middle set have no interdependencies, and
the last listed set (which the cluster places first) is restricted to instances in master status. 53
7.1. Simple alert configuration .. 55
7.2. Alert configuration with recipient .. 55
7.3. Alert configuration with meta-attributes ... 56
7.4. Alert configuration with instance attributes .. 57
7.5. Alert configuration to receive only node events and fencing events .. 57
7.6. Alert configuration to be called when certain node attributes change 57
7.7. Sending cluster events as SNMP traps .. 58
7.8. Sending cluster events as e-mails ... 58

Configuration Explained

xiv

8.1. True if now is any time in the year 2005 .. 64
8.2. Equivalent expression ... 65
8.3. 9am-5pm Monday-Friday ... 65
8.4. 9am-6pm Monday through Friday or anytime Saturday ... 65
8.5. 9am-5pm or 9pm-12am Monday through Friday ... 65
8.6. Mondays in March 2005 .. 65
8.7. A full moon on Friday the 13th .. 66
8.8. Prevent myApacheRsc from running on c001n03 .. 66
8.9. Prevent myApacheRsc from running on c001n03 - expanded version 66
8.10. A sample nodes section for use with score-attribute .. 67
8.11. Defining different resource options based on the node name ... 67
8.12. Change resource-stickiness during working hours .. 68
9.1. Specifying a Base for Recurring Action Intervals ... 72
9.2. An example ping cluster resource that checks node connectivity once every minute 77
9.3. Don’t run a resource on unconnected nodes .. 77
9.4. Run only on nodes connected to three or more ping targets. ... 78
9.5. Prefer the node with the most connected ping nodes .. 78
9.6. How the cluster translates the above location constraint .. 78
9.7. A more complex example of choosing a location based on connectivity 78
9.8. The DRBD agent’s logic for supporting reload ... 81
9.9. The DRBD Agent Advertising Support for the reload Operation ... 81
9.10. Parameter that can be changed using reload .. 82
10.1. A group of two primitive resources ... 83
10.2. How the cluster sees a group resource .. 84
10.3. Some constraints involving groups ... 85
10.4. A clone of an LSB resource .. 86
10.5. Some constraints involving clones .. 87
10.6. Notification variables ... 89
10.7. Monitoring both states of a multi-state resource .. 91
10.8. Constraints involving multi-state resources ... 92
10.9. Colocate C and D with A’s and B’s master instances .. 92
10.10. Start C and D after first promoting A and B .. 93
10.11. Explicitly preferring node1 to be promoted to master ... 93
10.12. A bundle for a containerized web server ... 98
11.1. Resource template for a migratable Xen virtual machine ... 105
11.2. Xen primitive resource using a resource template ... 106
11.3. Equivalent Xen primitive resource not using a resource template 106
11.4. Xen resource overriding template values .. 106
11.5. Referencing rules from other constraints ... 109
11.6. Referencing attributes, options, and operations from other resources 109
11.7. Tag referencing three resources .. 110
11.8. Constraint using a tag ... 110
11.9. Equivalent constraints without tags ... 110
12.1. Specifying CPU and RAM capacities of two nodes .. 111
12.2. Specifying CPU and RAM consumed by several resources .. 112
13.1. Obtaining a list of STONITH Parameters .. 121
13.2. An IPMI-based STONITH Resource ... 123
13.3. Fencing topology with different devices for different nodes ... 124
14.1. A bare-bones status entry for a healthy node cl-virt-1 ... 131
14.2. A set of transient node attributes for node cl-virt-1 ... 132
14.3. A record of the apcstonith resource ... 133
14.4. A monitor operation (determines current state of the apcstonith resource) 134
14.5. Resource history of a pingd clone with multiple jobs .. 135
15.1. Constraint that fences node if ticketA is revoked ... 139

xv

15.2. Constraint that demotes rsc1 if ticketA is revoked .. 139
15.3. Ticket constraint for multiple resources ... 139
C.1. Corosync 2.x configuration file for two nodes myhost1 and myhost2 149
C.2. Corosync 2.x configuration file for three nodes myhost1, myhost2 and myhost3 150
C.3. Corosync 1.x configuration file for a cluster with all nodes on the 192.0.2.0/24 network 150
C.4. Corosync 1._x_configuration fragment to enable Pacemaker plugin 151
C.5. Heartbeat configuration fragment to enable Pacemaker .. 152
F.1. An Empty Configuration .. 163
F.2. A simple configuration with two nodes, some cluster options and a resource 163
F.3. An advanced configuration with groups, clones and STONITH ... 164

xvi

xvii

Preface

Table of Contents
1. Document Conventions ... xvii

1.1. Typographic Conventions ... xvii
1.2. Pull-quote Conventions .. xviii
1.3. Notes and Warnings ... xix

2. We Need Feedback! .. xix

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later include
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and
all distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part
of a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key
combination: a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

xviii

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, select the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

Notes and Warnings

xix

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

Preface

xx

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla2 against the product
Pacemaker.

When submitting a bug report, be sure to mention the manual's identifier: Pacemaker_Explained

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

2 http://bugs.clusterlabs.org

http://bugs.clusterlabs.org

Chapter 1.

1

Read-Me-First

Table of Contents
1.1. The Scope of this Document ... 1
1.2. What Is Pacemaker? ... 1
1.3. Pacemaker Architecture .. 2

1.3.1. Internal Components .. 3
1.4. Types of Pacemaker Clusters .. 4

1.1. The Scope of this Document
The purpose of this document is to definitively explain the concepts used to configure Pacemaker. To
achieve this, it will focus exclusively on the XML syntax used to configure the CIB.

For those that are allergic to XML, there exist several unified shells and GUIs for Pacemaker. However
these tools will not be covered at all in this document 1 , precisely because they hide the XML.

Additionally, this document is NOT a step-by-step how-to guide for configuring a specific clustering
scenario.

Although such guides exist, 2 the purpose of this document is to provide an understanding of the
building blocks that can be used to construct any type of Pacemaker cluster.

1.2. What Is Pacemaker?
Pacemaker is a cluster resource manager, that is, a logic responsible for a life-cycle of deployed
software — indirectly perhaps even whole systems or their interconnections — under its control within
a set of computers (a.k.a. nodes) and driven by prescribed rules.

It achieves maximum availability for your cluster services (a.k.a. resources) by detecting and
recovering from node- and resource-level failures by making use of the messaging and membership
capabilities provided by your preferred cluster infrastructure (either Corosync3 or Heartbeat4), and
possibly by utilizing other parts of the overall cluster stack.

Note

For the goal of minimal downtime a term high availability was coined and together with its
acronym, HA, is well-established in the sector. To differentiate this sort of clusters from high
performance computing (HPC) ones, should a context require it (apparently, not the case in this
document), using HA cluster is an option.

Pacemaker’s key features include:

1 I hope, however, that the concepts explained here make the functionality of these tools more easily understood.
2 For example, see the Clusters from Scratch [http://www.clusterlabs.org/doc/] guide.
3 http://www.corosync.org/
4 http://linux-ha.org/wiki/Heartbeat

http://www.corosync.org/
http://linux-ha.org/wiki/Heartbeat
http://www.clusterlabs.org/doc/
http://www.clusterlabs.org/doc/
http://www.corosync.org/
http://linux-ha.org/wiki/Heartbeat

Chapter 1. Read-Me-First

2

• Detection and recovery of node and service-level failures

• Storage agnostic, no requirement for shared storage

• Resource agnostic, anything that can be scripted can be clustered

• Supports fencing (also referred to as the STONITH acronym, deciphered later on) for ensuring data
integrity

• Supports large and small clusters

• Supports both quorate and resource-driven clusters

• Supports practically any redundancy configuration

• Automatically replicated configuration that can be updated from any node

• Ability to specify cluster-wide service ordering, colocation and anti-colocation

• Support for advanced service types

• Clones: for services which need to be active on multiple nodes

• Multi-state: for services with multiple modes (e.g. master/slave, primary/secondary)

• Unified, scriptable cluster management tools

1.3. Pacemaker Architecture
At the highest level, the cluster is made up of three pieces:

• Non-cluster-aware components. These pieces include the resources themselves; scripts that
start, stop and monitor them; and a local daemon that masks the differences between the different
standards these scripts implement. Even though interactions of these resources when run as
multiple instances can resemble a distributed system, they still lack the proper HA mechanisms and/
or autonomous cluster-wide governance as subsumed in the following item.

• Resource management. Pacemaker provides the brain that processes and reacts to events
regarding the cluster. These events include nodes joining or leaving the cluster; resource events
caused by failures, maintenance and scheduled activities; and other administrative actions.
Pacemaker will compute the ideal state of the cluster and plot a path to achieve it after any of these
events. This may include moving resources, stopping nodes and even forcing them offline with
remote power switches.

• Low-level infrastructure. Projects like Corosync, CMAN and Heartbeat provide reliable messaging,
membership and quorum information about the cluster.

When combined with Corosync, Pacemaker also supports popular open source cluster filesystems.5

Due to past standardization within the cluster filesystem community, cluster filesystems make use of a
common distributed lock manager, which makes use of Corosync for its messaging and membership
capabilities (which nodes are up/down) and Pacemaker for fencing services.

5 Even though Pacemaker also supports Heartbeat, the filesystems need to use the stack for messaging and membership, and
Corosync seems to be what they’re standardizing on. Technically, it would be possible for them to support Heartbeat as well, but
there seems little interest in this.

Internal Components

3

Figure 1.1. The Pacemaker Stack

1.3.1. Internal Components
Pacemaker itself is composed of five key components:

• Cluster Information Base (CIB)

• Cluster Resource Management daemon (CRMd)

• Local Resource Management daemon (LRMd)

• Policy Engine (PEngine or PE)

• Fencing daemon (STONITHd)

Figure 1.2. Internal Components

The CIB uses XML to represent both the cluster’s configuration and current state of all resources in
the cluster. The contents of the CIB are automatically kept in sync across the entire cluster and are
used by the PEngine to compute the ideal state of the cluster and how it should be achieved.

Chapter 1. Read-Me-First

4

This list of instructions is then fed to the Designated Controller (DC). Pacemaker centralizes all cluster
decision making by electing one of the CRMd instances to act as a master. Should the elected CRMd
process (or the node it is on) fail, a new one is quickly established.

The DC carries out the PEngine’s instructions in the required order by passing them to either the Local
Resource Management daemon (LRMd) or CRMd peers on other nodes via the cluster messaging
infrastructure (which in turn passes them on to their LRMd process).

The peer nodes all report the results of their operations back to the DC and, based on the expected
and actual results, will either execute any actions that needed to wait for the previous one to
complete, or abort processing and ask the PEngine to recalculate the ideal cluster state based on the
unexpected results.

In some cases, it may be necessary to power off nodes in order to protect shared data or complete
resource recovery. For this, Pacemaker comes with STONITHd.

Note

STONITH is an acronym for Shoot-The-Other-Node-In-The-Head, a recommended practice that
misbehaving node is best to be promptly fenced (shut off, cut from shared resources or otherwise
immobilized), and is usually implemented with a remote power switch.

In Pacemaker, STONITH devices are modeled as resources (and configured in the CIB) to enable
them to be easily monitored for failure, however STONITHd takes care of understanding the STONITH
topology such that its clients simply request a node be fenced, and it does the rest.

1.4. Types of Pacemaker Clusters
Pacemaker makes no assumptions about your environment. This allows it to support practically any
redundancy configuration6 including Active/Active, Active/Passive, N+1, N+M, N-to-1 and N-to-N.

Figure 1.3. Active/Passive Redundancy

6 http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations

http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations

Types of Pacemaker Clusters

5

Two-node Active/Passive clusters using Pacemaker and DRBD are a cost-effective solution for many
High Availability situations.

Figure 1.4. Shared Failover

By supporting many nodes, Pacemaker can dramatically reduce hardware costs by allowing several
active/passive clusters to be combined and share a common backup node.

Figure 1.5. N to N Redundancy

When shared storage is available, every node can potentially be used for failover. Pacemaker can
even run multiple copies of services to spread out the workload.

6

Chapter 2.

7

Configuration Basics

Table of Contents
2.1. Configuration Layout ... 7
2.2. The Current State of the Cluster .. 8
2.3. How Should the Configuration be Updated? ... 9

2.3.1. Editing the CIB Using XML ... 9
2.3.2. Quickly Deleting Part of the Configuration ... 10
2.3.3. Updating the Configuration Without Using XML .. 10

2.4. Making Configuration Changes in a Sandbox ... 11
2.5. Testing Your Configuration Changes .. 12

2.5.1. Small Cluster Transition .. 13
2.5.2. Complex Cluster Transition ... 14

2.6. Do I Need to Update the Configuration on All Cluster Nodes? ... 14

2.1. Configuration Layout
The cluster is defined by the Cluster Information Base (CIB), which uses XML notation. The simplest
CIB, an empty one, looks like this:

Example 2.1. An empty configuration

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0"
 num_updates="0">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
</cib>

The empty configuration above contains the major sections that make up a CIB:

• cib: The entire CIB is enclosed with a cib tag. Certain fundamental settings are defined as
attributes of this tag.

• configuration: This section — the primary focus of this document — contains traditional
configuration information such as what resources the cluster serves and the relationships among
them.

• crm_config: cluster-wide configuration options

• nodes: the machines that host the cluster

• resources: the services run by the cluster

• constraints: indications of how resources should be placed

• status: This section contains the history of each resource on each node. Based on this data,
the cluster can construct the complete current state of the cluster. The authoritative source for
this section is the local resource manager (lrmd process) on each cluster node, and the cluster

Chapter 2. Configuration Basics

8

will occasionally repopulate the entire section. For this reason, it is never written to disk, and
administrators are advised against modifying it in any way.

In this document, configuration settings will be described as properties or options based on how they
are defined in the CIB:

• Properties are XML attributes of an XML element.

• Options are name-value pairs expressed as nvpair child elements of an XML element.

Normally you will use command-line tools that abstract the XML, so the distinction will be unimportant;
both properties and options are cluster settings you can tweak.

2.2. The Current State of the Cluster
Before one starts to configure a cluster, it is worth explaining how to view the finished product. For
this purpose we have created the crm_mon utility, which will display the current state of an active
cluster. It can show the cluster status by node or by resource and can be used in either single-shot or
dynamically-updating mode. There are also modes for displaying a list of the operations performed
(grouped by node and resource) as well as information about failures.

Using this tool, you can examine the state of the cluster for irregularities and see how it responds
when you cause or simulate failures.

Details on all the available options can be obtained using the crm_mon --help command.

Example 2.2. Sample output from crm_mon

 ============
 Last updated: Fri Nov 23 15:26:13 2007
 Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec)
 3 Nodes configured.
 5 Resources configured.
 ============

 Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online
 192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1
 192.168.100.182 (heartbeat:IPaddr): Started sles-1
 192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1
 child_DoFencing:2 (stonith:external/vmware): Started sles-1
 Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby
 Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online
 rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3
 rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3
 child_DoFencing:0 (stonith:external/vmware): Started sles-3

Example 2.3. Sample output from crm_mon -n

 ============
 Last updated: Fri Nov 23 15:26:13 2007
 Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec)
 3 Nodes configured.
 5 Resources configured.
 ============

 Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online
 Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby
 Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online

How Should the Configuration be Updated?

9

 Resource Group: group-1
 192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1
 192.168.100.182 (heartbeat:IPaddr): Started sles-1
 192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3
 rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3
 Clone Set: DoFencing
 child_DoFencing:0 (stonith:external/vmware): Started sles-3
 child_DoFencing:1 (stonith:external/vmware): Stopped
 child_DoFencing:2 (stonith:external/vmware): Started sles-1

The DC (Designated Controller) node is where all the decisions are made, and if the current DC fails
a new one is elected from the remaining cluster nodes. The choice of DC is of no significance to an
administrator beyond the fact that its logs will generally be more interesting.

2.3. How Should the Configuration be Updated?
There are three basic rules for updating the cluster configuration:

• Rule 1 - Never edit the cib.xml file manually. Ever. I’m not making this up.

• Rule 2 - Read Rule 1 again.

• Rule 3 - The cluster will notice if you ignored rules 1 & 2 and refuse to use the configuration.

Now that it is clear how not to update the configuration, we can begin to explain how you should.

2.3.1. Editing the CIB Using XML
The most powerful tool for modifying the configuration is the cibadmin command. With cibadmin,
you can query, add, remove, update or replace any part of the configuration. All changes take effect
immediately, so there is no need to perform a reload-like operation.

The simplest way of using cibadmin is to use it to save the current configuration to a temporary file,
edit that file with your favorite text or XML editor, and then upload the revised configuration. 1

Example 2.4. Safely using an editor to modify the cluster configuration

cibadmin --query > tmp.xml
vi tmp.xml
cibadmin --replace --xml-file tmp.xml

Some of the better XML editors can make use of a Relax NG schema to help make sure any changes
you make are valid. The schema describing the configuration can be found in pacemaker.rng,
which may be deployed in a location such as /usr/share/pacemaker or /usr/lib/heartbeat
depending on your operating system and how you installed the software.

If you want to modify just one section of the configuration, you can query and replace just that section
to avoid modifying any others.

1 This process might appear to risk overwriting changes that happen after the initial cibadmin call, but pacemaker will reject
any update that is "too old". If the CIB is updated in some other fashion after the initial cibadmin, the second cibadmin will be
rejected because the version number will be too low.

Chapter 2. Configuration Basics

10

Example 2.5. Safely using an editor to modify only the resources section

cibadmin --query --scope resources > tmp.xml
vi tmp.xml
cibadmin --replace --scope resources --xml-file tmp.xml

2.3.2. Quickly Deleting Part of the Configuration
Identify the object you wish to delete by XML tag and id. For example, you might search the CIB for all
STONITH-related configuration:

Example 2.6. Searching for STONITH-related configuration items

cibadmin -Q | grep stonith
 <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="reboot"/>
 <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="1"/>
 <primitive id="child_DoFencing" class="stonith" type="external/vmware">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:1" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:2" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:3" type="external/vmware" class="stonith">

If you wanted to delete the primitive tag with id child_DoFencing, you would run:

cibadmin --delete --xml-text '<primitive id="child_DoFencing"/>'

2.3.3. Updating the Configuration Without Using XML
Most tasks can be performed with one of the other command-line tools provided with pacemaker,
avoiding the need to read or edit XML.

To enable STONITH for example, one could run:

crm_attribute --name stonith-enabled --update 1

Or, to check whether somenode is allowed to run resources, there is:

crm_standby --get-value --node somenode

Or, to find the current location of my-test-rsc, one can use:

crm_resource --locate --resource my-test-rsc

Examples of using these tools for specific cases will be given throughout this document where
appropriate.

Making Configuration Changes in a Sandbox

11

Note

Old versions of pacemaker (1.0.3 and earlier) had different command-line tool syntax. If you are
using an older version, check your installed manual pages for the proper syntax to use.

2.4. Making Configuration Changes in a Sandbox
Often it is desirable to preview the effects of a series of changes before updating the configuration
all at once. For this purpose, we have created crm_shadow which creates a "shadow" copy of the
configuration and arranges for all the command line tools to use it.

To begin, simply invoke crm_shadow --create with the name of a configuration to create 2, and
follow the simple on-screen instructions.

Warning

Read this section and the on-screen instructions carefully; failure to do so could result in
destroying the cluster’s active configuration!

Example 2.7. Creating and displaying the active sandbox

crm_shadow --create test
Setting up shadow instance
Type Ctrl-D to exit the crm_shadow shell
shadow[test]:
shadow[test] # crm_shadow --which
test

From this point on, all cluster commands will automatically use the shadow copy instead of talking
to the cluster’s active configuration. Once you have finished experimenting, you can either make the
changes active via the --commit option, or discard them using the --delete option. Again, be sure
to follow the on-screen instructions carefully!

For a full list of crm_shadow options and commands, invoke it with the --help option.

Example 2.8. Use sandbox to make multiple changes all at once, discard them, and verify real
configuration is untouched

 shadow[test] # crm_failcount -r rsc_c001n01 -G
 scope=status name=fail-count-rsc_c001n01 value=0
 shadow[test] # crm_standby --node c001n02 -v on
 shadow[test] # crm_standby --node c001n02 -G
 scope=nodes name=standby value=on

 shadow[test] # cibadmin --erase --force

2 Shadow copies are identified with a name, making it possible to have more than one.

Chapter 2. Configuration Basics

12

 shadow[test] # cibadmin --query
 <cib cib_feature_revision="1" validate-with="pacemaker-1.0" admin_epoch="0"
 crm_feature_set="3.0" have-quorum="1" epoch="112"
 dc-uuid="c001n01" num_updates="1" cib-last-written="Fri Jun 27 12:17:10 2008">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
 </cib>
 shadow[test] # crm_shadow --delete test --force
 Now type Ctrl-D to exit the crm_shadow shell
 shadow[test] # exit
 # crm_shadow --which
 No active shadow configuration defined
 # cibadmin -Q
 <cib cib_feature_revision="1" validate-with="pacemaker-1.0" admin_epoch="0"
 crm_feature_set="3.0" have-quorum="1" epoch="110"
 dc-uuid="c001n01" num_updates="551">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="cib-bootstrap-1" name="stonith-enabled" value="1"/>
 <nvpair id="cib-bootstrap-2" name="pe-input-series-max" value="30000"/>

2.5. Testing Your Configuration Changes
We saw previously how to make a series of changes to a "shadow" copy of the configuration. Before
loading the changes back into the cluster (e.g. crm_shadow --commit mytest --force), it is
often advisable to simulate the effect of the changes with crm_simulate. For example:

crm_simulate --live-check -VVVVV --save-graph tmp.graph --save-dotfile tmp.dot

This tool uses the same library as the live cluster to show what it would have done given the supplied
input. Its output, in addition to a significant amount of logging, is stored in two files tmp.graph and
tmp.dot. Both files are representations of the same thing: the cluster’s response to your changes.

The graph file stores the complete transition from the existing cluster state to your desired new state,
containing a list of all the actions, their parameters and their pre-requisites. Because the transition
graph is not terribly easy to read, the tool also generates a Graphviz 3 dot-file representing the same
information.

For information on the options supported by crm_simulate, use its --help option.

Interpreting the Graphviz output
• Arrows indicate ordering dependencies

• Dashed arrows indicate dependencies that are not present in the transition graph

• Actions with a dashed border of any color do not form part of the transition graph

• Actions with a green border form part of the transition graph

• Actions with a red border are ones the cluster would like to execute but cannot run

3 Graph visualization software. See http://www.graphviz.org/ for details.

http://www.graphviz.org/

Small Cluster Transition

13

• Actions with a blue border are ones the cluster does not feel need to be executed

• Actions with orange text are pseudo/pretend actions that the cluster uses to simplify the graph

• Actions with black text are sent to the LRM

• Resource actions have text of the form rsc_action_interval node

• Any action depending on an action with a red border will not be able to execute.

• Loops are really bad. Please report them to the development team.

2.5.1. Small Cluster Transition

In the above example, it appears that a new node, pcmk-2, has come online and that the cluster
is checking to make sure rsc1, rsc2 and rsc3 are not already running there (Indicated by the
rscN_monitor_0 entries). Once it did that, and assuming the resources were not active there, it would
have liked to stop rsc1 and rsc2 on pcmk-1 and move them to pcmk-2. However, there appears to
be some problem and the cluster cannot or is not permitted to perform the stop actions which implies
it also cannot perform the start actions. For some reason the cluster does not want to start rsc3
anywhere.

Chapter 2. Configuration Basics

14

2.5.2. Complex Cluster Transition

2.6. Do I Need to Update the Configuration on All Cluster
Nodes?
No. Any changes are immediately synchronized to the other active members of the cluster.

Do I Need to Update the Configuration on All Cluster Nodes?

15

To reduce bandwidth, the cluster only broadcasts the incremental updates that result from your
changes and uses MD5 checksums to ensure that each copy is completely consistent.

16

Chapter 3.

17

Cluster-Wide Configuration

Table of Contents
3.1. CIB Properties .. 17

3.1.1. Working with CIB Properties ... 18
3.2. Cluster Options ... 18

3.2.1. Querying and Setting Cluster Options .. 21
3.2.2. When Options are Listed More Than Once .. 22

3.1. CIB Properties
Certain settings are defined by CIB properties (that is, attributes of the cib tag) rather than with the
rest of the cluster configuration in the configuration section.

The reason is simply a matter of parsing. These options are used by the configuration database which
is, by design, mostly ignorant of the content it holds. So the decision was made to place them in an
easy-to-find location.

Table 3.1. CIB Properties

Field Description

admin_epoch When a node joins the cluster, the cluster performs a check to
see which node has the best configuration. It asks the node with
the highest (admin_epoch, epoch, num_updates) tuple to
replace the configuration on all the nodes — which makes setting
them, and setting them correctly, very important. admin_epoch
is never modified by the cluster; you can use this to make the
configurations on any inactive nodes obsolete. Never set this
value to zero. In such cases, the cluster cannot tell the difference
between your configuration and the "empty" one used when
nothing is found on disk.

epoch The cluster increments this every time the configuration is updated
(usually by the administrator).

num_updates The cluster increments this every time the configuration or status
is updated (usually by the cluster) and resets it to 0 when epoch
changes.

validate-with Determines the type of XML validation that will be done on the
configuration. If set to none, the cluster will not verify that updates
conform to the DTD (nor reject ones that don’t). This option can be
useful when operating a mixed-version cluster during an upgrade.

cib-last-written Indicates when the configuration was last written to disk.
Maintained by the cluster; for informational purposes only.

have-quorum Indicates if the cluster has quorum. If false, this may mean that
the cluster cannot start resources or fence other nodes (see no-
quorum-policy below). Maintained by the cluster.

dc-uuid Indicates which cluster node is the current leader. Used by the
cluster when placing resources and determining the order of some
events. Maintained by the cluster.

Chapter 3. Cluster-Wide Configuration

18

3.1.1. Working with CIB Properties
Although these fields can be written to by the user, in most cases the cluster will overwrite any values
specified by the user with the "correct" ones.

To change the ones that can be specified by the user, for example admin_epoch, one should use:

cibadmin --modify --xml-text '<cib admin_epoch="42"/>'

A complete set of CIB properties will look something like this:

Example 3.1. Attributes set for a cib object

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2"
 admin_epoch="42" epoch="116" num_updates="1"
 cib-last-written="Mon Jan 12 15:46:39 2015" update-origin="rhel7-1"
 update-client="crm_attribute" have-quorum="1" dc-uuid="1">

3.2. Cluster Options
Cluster options, as you might expect, control how the cluster behaves when confronted with certain
situations.

They are grouped into sets within the crm_config section, and, in advanced configurations, there
may be more than one set. (This will be described later in the section on Chapter 8, Rules where
we will show how to have the cluster use different sets of options during working hours than during
weekends.) For now, we will describe the simple case where each option is present at most once.

You can obtain an up-to-date list of cluster options, including their default values, by running the man
pengine and man crmd commands.

Table 3.2. Cluster Options

Option Default Description

dc-version Version of Pacemaker on the cluster’s DC. Determined
automatically by the cluster. Often includes the hash
which identifies the exact Git changeset it was built from.
Used for diagnostic purposes.

cluster-
infrastructure

 The messaging stack on which Pacemaker is currently
running. Determined automatically by the cluster. Used
for informational and diagnostic purposes.

expected-quorum-
votes

 The number of nodes expected to be in the cluster.
Determined automatically by the cluster. Used to
calculate quorum in clusters that use Corosync 1.x
without CMAN as the messaging layer.

no-quorum-policy stop What to do when the cluster does not have quorum.
Allowed values:

• ignore: continue all resource management

• freeze: continue resource management, but don’t
recover resources from nodes not in the affected
partition

• stop: stop all resources in the affected cluster
partition

Cluster Options

19

Option Default Description
• suicide: fence all nodes in the affected cluster

partition

batch-limit 0 (30
before
version
1.1.11)

 The maximum number of actions that the cluster may
execute in parallel across all nodes. The "correct" value
will depend on the speed and load of your network
and cluster nodes. If zero, the cluster will impose a
dynamically calculated limit only when any node has high
load.

migration-limit -1 The number of migration jobs that the TE is allowed
to execute in parallel on a node. A value of -1 means
unlimited.

symmetric-cluster TRUE Can all resources run on any node by default?

stop-all-resources FALSE Should the cluster stop all resources?

stop-orphan-
resources

TRUE Should deleted resources be stopped? This value
takes precedence over is-managed (i.e. even
unmanaged resources will be stopped if deleted from the
configuration when this value is TRUE).

stop-orphan-
actions

TRUE Should deleted actions be cancelled?

start-failure-is-
fatal

TRUE Should a failure to start a resource on a particular node
prevent further start attempts on that node? If FALSE,
the cluster will decide whether the same node is still
eligible based on the resource’s current failure count and
migration-threshold (see Section 9.3, “Handling
Resource Failure”).

enable-startup-
probes

TRUE Should the cluster check for active resources during
startup?

maintenance-mode FALSE Should the cluster refrain from monitoring, starting and
stopping resources?

stonith-enabled TRUE Should failed nodes and nodes with resources that can’t
be stopped be shot? If you value your data, set up a
STONITH device and enable this.

If true, or unset, the cluster will refuse to start resources
unless one or more STONITH resources have been
configured. If false, unresponsive nodes are immediately
assumed to be running no resources, and resource
takeover to online nodes starts without any further
protection (which means data loss if the unresponsive
node still accesses shared storage, for example).
See also the requires meta-attribute in Section 5.4,
“Resource Options”.

stonith-action reboot Action to send to STONITH device. Allowed values are
reboot and off. The value poweroff is also allowed,
but is only used for legacy devices.

stonith-timeout 60s How long to wait for STONITH actions (reboot, on, off) to
complete

Chapter 3. Cluster-Wide Configuration

20

Option Default Description

stonith-max-
attempts

10 How many times fencing can fail for a target before the
cluster will no longer immediately re-attempt it. (since
1.1.17)

concurrent-fencing FALSE Is the cluster allowed to initiate multiple fence actions
concurrently? (since 1.1.15)

cluster-delay 60s Estimated maximum round-trip delay over the network
(excluding action execution). If the TE requires an action
to be executed on another node, it will consider the
action failed if it does not get a response from the other
node in this time (after considering the action’s own
timeout). The "correct" value will depend on the speed
and load of your network and cluster nodes.

dc-deadtime 20s How long to wait for a response from other nodes during
startup.

The "correct" value will depend on the speed/load of your
network and the type of switches used.

cluster-recheck-
interval

15min Polling interval for time-based changes to options,
resource parameters and constraints.

The Cluster is primarily event-driven, but your
configuration can have elements that take effect based
on the time of day. To ensure these changes take effect,
we can optionally poll the cluster’s status for changes.
A value of 0 disables polling. Positive values are an
interval (in seconds unless other SI units are specified,
e.g. 5min).

cluster-ipc-limit 500 The maximum IPC message backlog before one
cluster daemon will disconnect another. This is of use
in large clusters, for which a good value is the number
of resources in the cluster multiplied by the number of
nodes. The default of 500 is also the minimum. Raise this
if you see "Evicting client" messages for cluster daemon
PIDs in the logs.

pe-error-series-
max

-1 The number of PE inputs resulting in ERRORs to save.
Used when reporting problems. A value of -1 means
unlimited (report all).

pe-warn-series-max -1 The number of PE inputs resulting in WARNINGs to
save. Used when reporting problems. A value of -1
means unlimited (report all).

pe-input-series-
max

-1 The number of "normal" PE inputs to save. Used when
reporting problems. A value of -1 means unlimited (report
all).

placement-strategy default How the cluster should allocate resources to nodes (see
Chapter 12, Utilization and Placement Strategy [111]).
Allowed values are default, utilization,
balanced, and minimal. (since 1.1.0)

node-health-
strategy

none How the cluster should react to node health attributes
(see Section 9.5, “Tracking Node Health”). Allowed

Querying and Setting Cluster Options

21

Option Default Description
values are none, migrate-on-red, only-green,
progressive, and custom.

node-health-base 0 The base health score assigned to a node. Only used
when node-health-strategy is progressive.
(since 1.1.16)

node-health-green 0 The score to use for a node health attribute whose value
is green. Only used when node-health-strategy is
progressive or custom.

node-health-yellow 0 The score to use for a node health attribute whose value
is yellow. Only used when node-health-strategy
is progressive or custom.

node-health-red 0 The score to use for a node health attribute whose value
is red. Only used when node-health-strategy is
progressive or custom.

remove-after-stop FALSE Advanced Use Only: Should the cluster remove
resources from the LRM after they are stopped? Values
other than the default are, at best, poorly tested and
potentially dangerous.

startup-fencing TRUE Advanced Use Only: Should the cluster shoot unseen
nodes? Not using the default is very unsafe!

election-timeout 2min Advanced Use Only: If you need to adjust this value, it
probably indicates the presence of a bug.

shutdown-
escalation

20min Advanced Use Only: If you need to adjust this value, it
probably indicates the presence of a bug.

crmd-integration-
timeout

3min Advanced Use Only: If you need to adjust this value, it
probably indicates the presence of a bug.

crmd-finalization-
timeout

30min Advanced Use Only: If you need to adjust this value, it
probably indicates the presence of a bug.

crmd-transition-
delay

0s Advanced Use Only: Delay cluster recovery for the
configured interval to allow for additional/related events
to occur. Useful if your configuration is sensitive to the
order in which ping updates arrive. Enabling this option
will slow down cluster recovery under all conditions.

default-resource-
stickiness

0 Deprecated: See Section 5.4.2, “Setting Global Defaults
for Resource Meta-Attributes” instead

is-managed-default TRUE Deprecated: See Section 5.4.2, “Setting Global Defaults
for Resource Meta-Attributes” instead

default-action-
timeout

20s Deprecated: See Section 5.5.3, “Setting Global Defaults
for Operations” instead

3.2.1. Querying and Setting Cluster Options

Cluster options can be queried and modified using the crm_attribute tool. To get the current value
of cluster-delay, you can run:

Chapter 3. Cluster-Wide Configuration

22

crm_attribute --query --name cluster-delay

which is more simply written as

crm_attribute -G -n cluster-delay

If a value is found, you’ll see a result like this:

crm_attribute -G -n cluster-delay
scope=crm_config name=cluster-delay value=60s

If no value is found, the tool will display an error:

crm_attribute -G -n clusta-deway
scope=crm_config name=clusta-deway value=(null)
Error performing operation: No such device or address

To use a different value (for example, 30 seconds), simply run:

crm_attribute --name cluster-delay --update 30s

To go back to the cluster’s default value, you can delete the value, for example:

crm_attribute --name cluster-delay --delete
Deleted crm_config option: id=cib-bootstrap-options-cluster-delay name=cluster-delay

3.2.2. When Options are Listed More Than Once
If you ever see something like the following, it means that the option you’re modifying is present more
than once.

Example 3.2. Deleting an option that is listed twice

crm_attribute --name batch-limit --delete

Multiple attributes match name=batch-limit in crm_config:
Value: 50 (set=cib-bootstrap-options, id=cib-bootstrap-options-batch-limit)
Value: 100 (set=custom, id=custom-batch-limit)
Please choose from one of the matches above and supply the 'id' with --id

In such cases, follow the on-screen instructions to perform the requested action. To determine which
value is currently being used by the cluster, refer to Chapter 8, Rules.

Chapter 4.

23

Cluster Nodes

Table of Contents
4.1. Defining a Cluster Node .. 23
4.2. Where Pacemaker Gets the Node Name ... 23
4.3. Node Attributes ... 24
4.4. Managing Nodes in a Corosync-Based Cluster ... 24

4.4.1. Adding a New Corosync Node .. 24
4.4.2. Removing a Corosync Node ... 25
4.4.3. Replacing a Corosync Node ... 25

4.5. Managing Nodes in a Heartbeat-based Cluster ... 25
4.5.1. Adding a New Heartbeat Node ... 25
4.5.2. Removing a Heartbeat Node ... 26
4.5.3. Replacing a Heartbeat Node ... 26

4.1. Defining a Cluster Node
Each node in the cluster will have an entry in the nodes section containing its UUID, uname, and type.

Example 4.1. Example Heartbeat cluster node entry

<node id="1186dc9a-324d-425a-966e-d757e693dc86" uname="pcmk-1" type="normal"/>

Example 4.2. Example Corosync cluster node entry

<node id="101" uname="pcmk-1" type="normal"/>

In normal circumstances, the admin should let the cluster populate this information automatically from
the communications and membership data. However for Heartbeat, one can use the crm_uuid tool to
read an existing UUID or define a value before the cluster starts.

4.2. Where Pacemaker Gets the Node Name
Traditionally, Pacemaker required nodes to be referred to by the value returned by uname -n. This
can be problematic for services that require the uname -n to be a specific value (e.g. for a licence
file).

This requirement has been relaxed for clusters using Corosync 2.0 or later. The name Pacemaker
uses is:

1. The value stored in corosync.conf under ring0_addr in the nodelist, if it does not contain an
IP address; otherwise

2. The value stored in corosync.conf under name in the nodelist; otherwise

3. The value of uname -n

Pacemaker provides the crm_node -n command which displays the name used by a running cluster.

Chapter 4. Cluster Nodes

24

If a Corosync nodelist is used, crm_node --name-for-id number is also available to display the
name used by the node with the corosync nodeid of number, for example: crm_node --name-for-
id 2.

4.3. Node Attributes
Node attributes are a special type of option (name-value pair) that applies to a node object.

Beyond the basic definition of a node, the administrator can describe the node’s attributes, such
as how much RAM, disk, what OS or kernel version it has, perhaps even its physical location. This
information can then be used by the cluster when deciding where to place resources. For more
information on the use of node attributes, see Chapter 8, Rules.

Node attributes can be specified ahead of time or populated later, when the cluster is running, using
crm_attribute.

Below is what the node’s definition would look like if the admin ran the command:

Example 4.3. Result of using crm_attribute to specify which kernel pcmk-1 is running

crm_attribute --type nodes --node pcmk-1 --name kernel --update $(uname -r)

<node uname="pcmk-1" type="normal" id="101">
 <instance_attributes id="nodes-101">
 <nvpair id="nodes-101-kernel" name="kernel" value="3.10.0-123.13.2.el7.x86_64"/>
 </instance_attributes>
</node>

Rather than having to read the XML, a simpler way to determine the current value of an attribute is to
use crm_attribute again:

crm_attribute --type nodes --node pcmk-1 --name kernel --query
scope=nodes name=kernel value=3.10.0-123.13.2.el7.x86_64

By specifying --type nodes the admin tells the cluster that this attribute is persistent. There are
also transient attributes which are kept in the status section which are "forgotten" whenever the node
rejoins the cluster. The cluster uses this area to store a record of how many times a resource has
failed on that node, but administrators can also read and write to this section by specifying --type
status.

4.4. Managing Nodes in a Corosync-Based Cluster

4.4.1. Adding a New Corosync Node

To add a new node:

1. Install Corosync and Pacemaker on the new host.

2. Copy /etc/corosync/corosync.conf and /etc/corosync/authkey (if it exists) from
an existing node. You may need to modify the mcastaddr option to match the new node’s IP
address.

Removing a Corosync Node

25

3. Start the cluster software on the new host. If a log message containing "Invalid digest" appears
from Corosync, the keys are not consistent between the machines.

4.4.2. Removing a Corosync Node

Because the messaging and membership layers are the authoritative source for cluster nodes,
deleting them from the CIB is not a complete solution. First, one must arrange for corosync to forget
about the node (pcmk-1 in the example below).

1. Stop the cluster on the host to be removed. How to do this will vary with your operating system
and installed versions of cluster software, for example, pcs cluster stop if you are using pcs
for cluster management, or service corosync stop on a host using corosync 1.x with the
pacemaker plugin.

2. From one of the remaining active cluster nodes, tell Pacemaker to forget about the removed host,
which will also delete the node from the CIB:

crm_node -R pcmk-1

Note

This procedure only works for pacemaker 1.1.8 and later.

4.4.3. Replacing a Corosync Node

To replace an existing cluster node:

1. Make sure the old node is completely stopped.

2. Give the new machine the same hostname and IP address as the old one.

3. Follow the procedure above for adding a node.

4.5. Managing Nodes in a Heartbeat-based Cluster

4.5.1. Adding a New Heartbeat Node

To add a new node:

1. Install heartbeat and pacemaker on the new host.

2. Copy ha.cf and authkeys from an existing node.

3. If you do not use autojoin any in ha.cf, run:

hb_addnode $(uname -n)

Chapter 4. Cluster Nodes

26

4. Start the cluster software on the new node.

4.5.2. Removing a Heartbeat Node

Because the messaging and membership layers are the authoritative source for cluster nodes,
deleting them from the CIB is not a complete solution. First, one must arrange for Heartbeat to forget
about the node (pcmk-1 in the example below).

1. On the host to be removed, stop the cluster:

service heartbeat stop

2. From one of the remaining active cluster nodes, tell Heartbeat the node should be removed:

hb_delnode pcmk-1

3. Tell Pacemaker to forget about the removed host:

crm_node -R pcmk-1

Note

This procedure only works for pacemaker versions after 1.1.8.

4.5.3. Replacing a Heartbeat Node
 To replace an existing cluster node:

1. Make sure the old node is completely stopped.

2. Give the new machine the same hostname as the old one.

3. Go to an active cluster node and look up the UUID for the old node in /var/lib/heartbeat/
hostcache.

4. Install the cluster software.

5. Copy ha.cf and authkeys to the new node.

6. On the new node, populate its UUID using crm_uuid -w and the UUID obtained earlier.

7. Start the new cluster node.

Chapter 5.

27

Cluster Resources

Table of Contents
5.1. What is a Cluster Resource? ... 27
5.2. Resource Classes ... 27

5.2.1. Open Cluster Framework .. 28
5.2.2. Linux Standard Base .. 28
5.2.3. Systemd ... 29
5.2.4. Upstart ... 29
5.2.5. System Services .. 30
5.2.6. STONITH ... 30
5.2.7. Nagios Plugins ... 30

5.3. Resource Properties .. 31
5.4. Resource Options ... 31

5.4.1. Resource Meta-Attributes ... 31
5.4.2. Setting Global Defaults for Resource Meta-Attributes ... 34
5.4.3. Resource Instance Attributes .. 34

5.5. Resource Operations .. 36
5.5.1. Monitoring Resources for Failure .. 37
5.5.2. Monitoring Resources When Administration is Disabled .. 38
5.5.3. Setting Global Defaults for Operations ... 38
5.5.4. When Implicit Operations Take a Long Time ... 38
5.5.5. Multiple Monitor Operations .. 39
5.5.6. Disabling a Monitor Operation ... 39

5.1. What is a Cluster Resource?

A resource is a service made highly available by a cluster. The simplest type of resource, a primitive
resource, is described in this section. More complex forms, such as groups and clones, are described
in later sections.

Every primitive resource has a resource agent. A resource agent is an external program that abstracts
the service it provides and present a consistent view to the cluster.

This allows the cluster to be agnostic about the resources it manages. The cluster doesn’t need to
understand how the resource works because it relies on the resource agent to do the right thing when
given a start, stop or monitor command. For this reason, it is crucial that resource agents are
well-tested.

Typically, resource agents come in the form of shell scripts. However, they can be written using any
technology (such as C, Python or Perl) that the author is comfortable with.

5.2. Resource Classes

Pacemaker supports several classes of agents:

• OCF

Chapter 5. Cluster Resources

28

• LSB

• Upstart

• Systemd

• Service

• Fencing

• Nagios Plugins

5.2.1. Open Cluster Framework

The OCF standard 1 is basically an extension of the Linux Standard Base conventions for init scripts
to:

• support parameters,

• make them self-describing, and

• make them extensible

OCF specs have strict definitions of the exit codes that actions must return. 2

The cluster follows these specifications exactly, and giving the wrong exit code will cause the cluster to
behave in ways you will likely find puzzling and annoying. In particular, the cluster needs to distinguish
a completely stopped resource from one which is in some erroneous and indeterminate state.

Parameters are passed to the resource agent as environment variables, with the special prefix
OCF_RESKEY_. So, a parameter which the user thinks of as ip will be passed to the resource agent
as OCF_RESKEY_ip. The number and purpose of the parameters is left to the resource agent;
however, the resource agent should use the meta-data command to advertise any that it supports.

The OCF class is the most preferred as it is an industry standard, highly flexible (allowing parameters
to be passed to agents in a non-positional manner) and self-describing.

For more information, see the reference3 and Appendix B, More About OCF Resource Agents.

5.2.2. Linux Standard Base

LSB resource agents are those found in /etc/init.d.

Generally, they are provided by the OS distribution and, in order to be used with the cluster, they must
conform to the LSB Spec. 4

1 See http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD — at least as it relates to resource
agents. The Pacemaker implementation has been somewhat extended from the OCF specs, but none of those changes are
incompatible with the original OCF specification.
2 The resource-agents source code includes the ocf-tester script, which can be useful in this regard.
3 http://www.linux-ha.org/wiki/OCF_Resource_Agents
4 See http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html for the LSB Spec as it
relates to init scripts.

http://www.linux-ha.org/wiki/OCF_Resource_Agents
http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD
http://www.linux-ha.org/wiki/OCF_Resource_Agents
http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Systemd

29

Warning

Many distributions claim LSB compliance but ship with broken init scripts. For details on how to
check whether your init script is LSB-compatible, see Appendix E, Init Script LSB Compliance.
Common problematic violations of the LSB standard include:

• Not implementing the status operation at all

• Not observing the correct exit status codes for start/stop/status actions

• Starting a started resource returns an error

• Stopping a stopped resource returns an error

Important

Remember to make sure the computer is not configured to start any services at boot time — that
should be controlled by the cluster.

5.2.3. Systemd

Some newer distributions have replaced the old "SysV"5 style of initialization daemons and scripts with
an alternative called Systemd6.

Pacemaker is able to manage these services if they are present.

Instead of init scripts, systemd has unit files. Generally, the services (unit files) are provided by the OS
distribution, but there are online guides for converting from init scripts. 7

Important

Remember to make sure the computer is not configured to start any services at boot time — that
should be controlled by the cluster.

5.2.4. Upstart

5 http://en.wikipedia.org/wiki/Init#SysV-style
6 http://www.freedesktop.org/wiki/Software/systemd
7 For example, http://0pointer.de/blog/projects/systemd-for-admins-3.html

http://en.wikipedia.org/wiki/Init#SysV-style
http://www.freedesktop.org/wiki/Software/systemd
http://en.wikipedia.org/wiki/Init#SysV-style
http://www.freedesktop.org/wiki/Software/systemd
http://0pointer.de/blog/projects/systemd-for-admins-3.html

Chapter 5. Cluster Resources

30

Some newer distributions have replaced the old "SysV"8 style of initialization daemons (and scripts)
with an alternative called Upstart9.

Pacemaker is able to manage these services if they are present.

Instead of init scripts, upstart has jobs. Generally, the services (jobs) are provided by the OS
distribution.

Important

Remember to make sure the computer is not configured to start any services at boot time — that
should be controlled by the cluster.

5.2.5. System Services

Since there are various types of system services (systemd, upstart, and lsb), Pacemaker
supports a special service alias which intelligently figures out which one applies to a given cluster
node.

This is particularly useful when the cluster contains a mix of systemd, upstart, and lsb.

In order, Pacemaker will try to find the named service as:

1. an LSB init script

2. a Systemd unit file

3. an Upstart job

5.2.6. STONITH

The STONITH class is used exclusively for fencing-related resources. This is discussed later in
Chapter 13, STONITH.

5.2.7. Nagios Plugins

Nagios Plugins 10 allow us to monitor services on remote hosts.

Pacemaker is able to do remote monitoring with the plugins if they are present.

A common use case is to configure them as resources belonging to a resource container (usually
a virtual machine), and the container will be restarted if any of them has failed. Another use is to
configure them as ordinary resources to be used for monitoring hosts or services via the network.

8 http://en.wikipedia.org/wiki/Init#SysV-style
9 http://upstart.ubuntu.com/
10 The project has two independent forks, hosted at https://www.nagios-plugins.org/ and https://www.monitoring-plugins.org/.
Output from both projects' plugins is similar, so plugins from either project can be used with pacemaker.

http://en.wikipedia.org/wiki/Init#SysV-style
http://upstart.ubuntu.com/
http://en.wikipedia.org/wiki/Init#SysV-style
http://upstart.ubuntu.com/
https://www.nagios-plugins.org/
https://www.monitoring-plugins.org/

Resource Properties

31

The supported parameters are same as the long options of the plugin.

5.3. Resource Properties
These values tell the cluster which resource agent to use for the resource, where to find that resource
agent and what standards it conforms to.

Table 5.1. Properties of a Primitive Resource

Field Description

id Your name for the resource

class The standard the resource agent conforms to. Allowed values: lsb, nagios,
ocf, service, stonith, systemd, upstart

type The name of the Resource Agent you wish to use. E.g. IPaddr or Filesystem

provider The OCF spec allows multiple vendors to supply the same resource agent. To
use the OCF resource agents supplied by the Heartbeat project, you would
specify heartbeat here.

The XML definition of a resource can be queried with the crm_resource tool. For example:

crm_resource --resource Email --query-xml

might produce:

Example 5.1. A system resource definition

<primitive id="Email" class="service" type="exim"/>

Note

One of the main drawbacks to system services (LSB, systemd or Upstart) resources is that they
do not allow any parameters!

Example 5.2. An OCF resource definition

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="Public-IP-params">
 <nvpair id="Public-IP-ip" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

5.4. Resource Options
Resources have two types of options: meta-attributes and instance attributes. Meta-attributes apply to
any type of resource, while instance attributes are specific to each resource agent.

5.4.1. Resource Meta-Attributes
Meta-attributes are used by the cluster to decide how a resource should behave and can be easily set
using the --meta option of the crm_resource command.

Chapter 5. Cluster Resources

32

Table 5.2. Meta-attributes of a Primitive Resource

Field Default Description

priority 0 If not all resources can be active, the cluster will
stop lower priority resources in order to keep higher
priority ones active.

target-role Started What state should the cluster attempt to keep this
resource in? Allowed values:

• Stopped: Force the resource to be stopped

• Started: Allow the resource to be started (and
in the case of multi-state resources, promoted to
master if appropriate)

• Slave: Allow the resource to be started, but
only in Slave mode if the resource is multi-state

• Master: Equivalent to Started

is-managed TRUE Is the cluster allowed to start and stop the
resource? Allowed values: true, false

resource-
stickiness

value of
resource-
stickiness
in the
rsc_defaults
section

How much does the resource prefer to stay where
it is?

requires quorum for
resources
with a class
of stonith,
otherwise
unfencing
if unfencing is
active in the
cluster, otherwise
fencing if
stonith-
enabled is true,
otherwise quorum

Conditions under which the resource can be started
(since 1.1.8) Allowed values:

• nothing: can always be started

• quorum: The cluster can only start this resource
if a majority of the configured nodes are active

• fencing: The cluster can only start this
resource if a majority of the configured nodes are
active and any failed or unknown nodes have
been fenced

• unfencing: The cluster can only start this
resource if a majority of the configured nodes are
active and any failed or unknown nodes have
been fenced and only on nodes that have been
unfenced (since 1.1.9)

migration-
threshold

INFINITY How many failures may occur for this resource on
a node, before this node is marked ineligible to
host this resource. A value of 0 indicates that this
feature is disabled (the node will never be marked
ineligible); by constrast, the cluster treats INFINITY
(the default) as a very large but finite number. This
option has an effect only if the failed operation has

Resource Meta-Attributes

33

Field Default Description
on-fail=restart (the default), and additionally for
failed start operations, if the cluster property start-
failure-is-fatal is false.

failure-
timeout

0 How many seconds to wait before acting as if the
failure had not occurred, and potentially allowing
the resource back to the node on which it failed. A
value of 0 indicates that this feature is disabled. As
with any time-based actions, this is not guaranteed
to be checked more frequently than the value of
cluster-recheck-interval (see Section 3.2,
“Cluster Options”).

multiple-
active

stop_start What should the cluster do if it ever finds the
resource active on more than one node? Allowed
values:

• block: mark the resource as unmanaged

• stop_only: stop all active instances and leave
them that way

• stop_start: stop all active instances and start
the resource in one location only

allow-migrate TRUE for
ocf:pacemaker:remote
resources, FALSE
otherwise

Whether the cluster should try to "live migrate"
this resource when it needs to be moved (see
Section 9.4.3, “Migrating Resources”)

container-
attribute-
target

Specific to bundle resources; see Section 10.4.7,
“Bundle Node Attributes”

remote-node The name of the Pacemaker Remote guest node
this resource is associated with, if any. If specified,
this both enables the resource as a guest node
and defines the unique name used to identify the
guest node. The guest must be configured to run
the Pacemaker Remote daemon when it is started.
WARNING: This value cannot overlap with any
resource or node IDs. (since 1.1.9)

remote-port 3121 If remote-node is specified, the port on the guest
used for its Pacemaker Remote connection. The
Pacemaker Remote daemon on the guest must be
configured to listen on this port. (since 1.1.9)

remote-addr value of remote-
node

If remote-node is specified, the IP address
or hostname used to connect to the guest via
Pacemaker Remote. The Pacemaker Remote
daemon on the guest must be configured to accept
connections on this address. (since 1.1.9)

Chapter 5. Cluster Resources

34

Field Default Description

remote-
connect-
timeout

60s If remote-node is specified, how long before
a pending guest connection will time out. (since
1.1.10)

As an example of setting resource options, if you performed the following commands on an LSB Email
resource:

crm_resource --meta --resource Email --set-parameter priority --parameter-value 100
crm_resource -m -r Email -p multiple-active -v block

the resulting resource definition might be:

Example 5.3. An LSB resource with cluster options

<primitive id="Email" class="lsb" type="exim">
 <meta_attributes id="Email-meta_attributes">
 <nvpair id="Email-meta_attributes-priority" name="priority" value="100"/>
 <nvpair id="Email-meta_attributes-multiple-active" name="multiple-active"
 value="block"/>
 </meta_attributes>
</primitive>

5.4.2. Setting Global Defaults for Resource Meta-Attributes
To set a default value for a resource option, add it to the rsc_defaults section with
crm_attribute. For example,

crm_attribute --type rsc_defaults --name is-managed --update false

would prevent the cluster from starting or stopping any of the resources in the configuration (unless of
course the individual resources were specifically enabled by having their is-managed set to true).

5.4.3. Resource Instance Attributes
The resource agents of some resource classes (lsb, systemd and upstart not among them) can be
given parameters which determine how they behave and which instance of a service they control.

If your resource agent supports parameters, you can add them with the crm_resource command.
For example,

crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2

would create an entry in the resource like this:

Example 5.4. An example OCF resource with instance attributes

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

Resource Instance Attributes

35

For an OCF resource, the result would be an environment variable called OCF_RESKEY_ip with a
value of 192.0.2.2.

The list of instance attributes supported by an OCF resource agent can be found by calling the
resource agent with the meta-data command. The output contains an XML description of all the
supported attributes, their purpose and default values.

Example 5.5. Displaying the metadata for the Dummy resource agent template

export OCF_ROOT=/usr/lib/ocf
$OCF_ROOT/resource.d/pacemaker/Dummy meta-data

<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="Dummy" version="1.0">
<version>1.0</version>

<longdesc>
This is a Dummy Resource Agent. It does absolutely nothing except
keep track of whether its running or not.
Its purpose in life is for testing and to serve as a template for RA writers.

NB: Please pay attention to the timeouts specified in the actions
section below. They should be meaningful for the kind of resource
the agent manages. They should be the minimum advised timeouts,
but they shouldn't/cannot cover _all_ possible resource
instances. So, try to be neither overly generous nor too stingy,
but moderate. The minimum timeouts should never be below 10 seconds.
</longdesc>
<shortdesc>Example stateless resource agent</shortdesc>

<parameters>
<parameter name="state" unique="1">
<longdesc>
Location to store the resource state in.
</longdesc>
<shortdesc>State file</shortdesc>
<content type="string" default="/var/run/Dummy-default.state" />
</parameter>

<parameter name="fake" unique="0">
<longdesc>
Fake attribute that can be changed to cause a reload
</longdesc>
<shortdesc>Fake attribute that can be changed to cause a reload</shortdesc>
<content type="string" default="dummy" />
</parameter>

<parameter name="op_sleep" unique="1">
<longdesc>
Number of seconds to sleep during operations. This can be used to test how
the cluster reacts to operation timeouts.
</longdesc>
<shortdesc>Operation sleep duration in seconds.</shortdesc>
<content type="string" default="0" />
</parameter>

</parameters>

<actions>
<action name="start" timeout="20" />
<action name="stop" timeout="20" />
<action name="monitor" timeout="20" interval="10" depth="0"/>
<action name="reload" timeout="20" />

Chapter 5. Cluster Resources

36

<action name="migrate_to" timeout="20" />
<action name="migrate_from" timeout="20" />
<action name="validate-all" timeout="20" />
<action name="meta-data" timeout="5" />
</actions>
</resource-agent>

5.5. Resource Operations

Operations are actions the cluster can perform on a resource by calling the resource agent. Resource
agents must support certain common operations such as start, stop and monitor, and may implement
any others.

Some operations are generated by the cluster itself, for example, stopping and starting resources as
needed.

You can configure operations in the cluster configuration. As an example, by default the cluster will not
ensure your resources stay healthy once they are started. 11 To instruct the cluster to do this, you need
to add a monitor operation to the resource’s definition.

Example 5.6. An OCF resource with a recurring health check

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-check" name="monitor" interval="60s"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

Table 5.3. Properties of an Operation

Field Default Description

id A unique name for the operation.

name The action to perform. This can be any action
supported by the agent; common values include
monitor, start, and stop.

interval 0 How frequently (in seconds) to perform the
operation. A value of 0 means never. A positive
value defines a recurring action, which is typically
used with monitor.

timeout How long to wait before declaring the action has
failed

on-fail restart (except for
stop operations, which
default to fence when
STONITH is enabled
and block otherwise)

The action to take if this action ever fails. Allowed
values:

• ignore: Pretend the resource did not fail.

11 Currently, anyway. Automatic monitoring operations may be added in a future version of Pacemaker.

Monitoring Resources for Failure

37

Field Default Description
• block: Don’t perform any further operations on

the resource.

• stop: Stop the resource and do not start it
elsewhere.

• restart: Stop the resource and start it again
(possibly on a different node).

• fence: STONITH the node on which the
resource failed.

• standby: Move all resources away from the
node on which the resource failed.

enabled TRUE If false, ignore this operation definition. This
is typically used to pause a particular recurring
monitor operation; for instance, it can complement
the respective resource being unmanaged (is-
managed=false), as this alone will not block any
configured monitoring. Disabling the operation does
not suppress all actions of the given type. Allowed
values: true, false.

record-
pending

FALSE If true, the intention to perform the operation is
recorded so that GUIs and CLI tools can indicate
that an operation is in progress. This is best set as
an operation default (see next section). Allowed
values: true, false.

role Run the operation only on node(s) that the cluster
thinks should be in the specified role. This only
makes sense for recurring monitor operations.
Allowed (case-sensitive) values: Stopped,
Started, and in the case of multi-state resources,
Slave and Master.

5.5.1. Monitoring Resources for Failure
When Pacemaker first starts a resource, it runs one-time monitor operations (referred to as probes) to
ensure the resource is running where it’s supposed to be, and not running where it’s not supposed to
be. (This behavior can be affected by the resource-discovery location constraint property.)

Other than those initial probes, Pacemaker will not (by default) check that the resource continues to
stay healthy. As in the example above, you must configure monitor operations explicitly to perform
these checks.

By default, a monitor operation will ensure that the resource is running where it is supposed to. The
target-role property can be used for further checking.

For example, if a resource has one monitor operation with interval=10 role=Started and a
second monitor operation with interval=11 role=Stopped, the cluster will run the first monitor on
any nodes it thinks should be running the resource, and the second monitor on any nodes that it thinks

Chapter 5. Cluster Resources

38

should not be running the resource (for the truly paranoid, who want to know when an administrator
manually starts a service by mistake).

5.5.2. Monitoring Resources When Administration is Disabled
Recurring monitor operations behave differently under various administrative settings:

• When a resource is unmanaged (by setting is-managed=false): No monitors will be stopped.

If the unmanaged resource is stopped on a node where the cluster thinks it should be running, the
cluster will detect and report that it is not, but it will not consider the monitor failed, and will not try to
start the resource until it is managed again.

Starting the unmanaged resource on a different node is strongly discouraged and will at least cause
the cluster to consider the resource failed, and may require the resource’s target-role to be set
to Stopped then Started to be recovered.

• When a node is put into standby: All resources will be moved away from the node, and all monitor
operations will be stopped on the node, except those with role=Stopped. Monitor operations with
role=Stopped will be started on the node if appropriate.

• When the cluster is put into maintenance mode: All resources will be marked as unmanaged. All
monitor operations will be stopped, except those with role=Stopped. As with single unmanaged
resources, starting a resource on a node other than where the cluster expects it to be will cause
problems.

5.5.3. Setting Global Defaults for Operations
You can change the global default values for operation properties in a given cluster. These are
defined in an op_defaults section of the CIB’s configuration section, and can be set with
crm_attribute. For example,

crm_attribute --type op_defaults --name timeout --update 20s

would default each operation’s timeout to 20 seconds. If an operation’s definition also includes a
value for timeout, then that value would be used for that operation instead.

5.5.4. When Implicit Operations Take a Long Time
The cluster will always perform a number of implicit operations: start, stop and a non-recurring
monitor operation used at startup to check whether the resource is already active. If one of these is
taking too long, then you can create an entry for them and specify a longer timeout.

Example 5.7. An OCF resource with custom timeouts for its implicit actions

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-startup" name="monitor" interval="0" timeout="90s"/>
 <op id="public-ip-start" name="start" interval="0" timeout="180s"/>
 <op id="public-ip-stop" name="stop" interval="0" timeout="15min"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

Multiple Monitor Operations

39

5.5.5. Multiple Monitor Operations
Provided no two operations (for a single resource) have the same name and interval, you can have as
many monitor operations as you like. In this way, you can do a superficial health check every minute
and progressively more intense ones at higher intervals.

To tell the resource agent what kind of check to perform, you need to provide each monitor with
a different value for a common parameter. The OCF standard creates a special parameter called
OCF_CHECK_LEVEL for this purpose and dictates that it is "made available to the resource agent
without the normal OCF_RESKEY prefix".

Whatever name you choose, you can specify it by adding an instance_attributes block to the op
tag. It is up to each resource agent to look for the parameter and decide how to use it.

Example 5.8. An OCF resource with two recurring health checks, performing different levels of
checks specified via OCF_CHECK_LEVEL.

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-health-60" name="monitor" interval="60">
 <instance_attributes id="params-public-ip-depth-60">
 <nvpair id="public-ip-depth-60" name="OCF_CHECK_LEVEL" value="10"/>
 </instance_attributes>
 </op>
 <op id="public-ip-health-300" name="monitor" interval="300">
 <instance_attributes id="params-public-ip-depth-300">
 <nvpair id="public-ip-depth-300" name="OCF_CHECK_LEVEL" value="20"/>
 </instance_attributes>
 </op>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-level" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

5.5.6. Disabling a Monitor Operation
The easiest way to stop a recurring monitor is to just delete it. However, there can be times when you
only want to disable it temporarily. In such cases, simply add enabled="false" to the operation’s
definition.

Example 5.9. Example of an OCF resource with a disabled health check

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-check" name="monitor" interval="60s" enabled="false"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
</primitive>

This can be achieved from the command line by executing:

cibadmin --modify --xml-text '<op id="public-ip-check" enabled="false"/>'

Once you’ve done whatever you needed to do, you can then re-enable it with

Chapter 5. Cluster Resources

40

cibadmin --modify --xml-text '<op id="public-ip-check" enabled="true"/>'

Chapter 6.

41

Resource Constraints

Table of Contents
6.1. Scores .. 41

6.1.1. Infinity Math ... 41
6.2. Deciding Which Nodes a Resource Can Run On .. 42

6.2.1. Location Properties ... 42
6.2.2. Asymmetrical "Opt-In" Clusters ... 43
6.2.3. Symmetrical "Opt-Out" Clusters .. 44
6.2.4. What if Two Nodes Have the Same Score ... 44

6.3. Specifying the Order in which Resources Should Start/Stop .. 44
6.3.1. Ordering Properties .. 45
6.3.2. Optional and mandatory ordering .. 45

6.4. Placing Resources Relative to other Resources .. 46
6.4.1. Colocation Properties ... 46
6.4.2. Mandatory Placement ... 47
6.4.3. Advisory Placement .. 47
6.4.4. Colocation by Node Attribute .. 48

6.5. Resource Sets .. 48
6.6. Ordering Sets of Resources .. 49

6.6.1. Ordered Set ... 49
6.6.2. Ordering Multiple Sets .. 50
6.6.3. Resource Set OR Logic .. 51

6.7. Colocating Sets of Resources .. 52

6.1. Scores
Scores of all kinds are integral to how the cluster works. Practically everything from moving a resource
to deciding which resource to stop in a degraded cluster is achieved by manipulating scores in some
way.

Scores are calculated per resource and node. Any node with a negative score for a resource can’t run
that resource. The cluster places a resource on the node with the highest score for it.

6.1.1. Infinity Math
Pacemaker implements INFINITY (or equivalently, +INFINITY) internally as a score of 1,000,000.
Addition and subtraction with it follow these three basic rules:

• Any value + INFINITY = INFINITY

• Any value - INFINITY = -INFINITY

• INFINITY - INFINITY = -INFINITY

Chapter 6. Resource Constraints

42

Note

What if you want to use a score higher than 1,000,000? Typically this possibility arises when
someone wants to base the score on some external metric that might go above 1,000,000.

The short answer is you can’t.

The long answer is it is sometimes possible work around this limitation creatively. You may be
able to set the score to some computed value based on the external metric rather than use the
metric directly. For nodes, you can store the metric as a node attribute, and query the attribute
when computing the score (possibly as part of a custom resource agent).

6.2. Deciding Which Nodes a Resource Can Run On
Location constraints tell the cluster which nodes a resource can run on.

There are two alternative strategies. One way is to say that, by default, resources can run anywhere,
and then the location constraints specify nodes that are not allowed (an opt-out cluster). The other way
is to start with nothing able to run anywhere, and use location constraints to selectively enable allowed
nodes (an opt-in cluster).

Whether you should choose opt-in or opt-out depends on your personal preference and the make-up
of your cluster. If most of your resources can run on most of the nodes, then an opt-out arrangement is
likely to result in a simpler configuration. On the other-hand, if most resources can only run on a small
subset of nodes, an opt-in configuration might be simpler.

6.2.1. Location Properties
Table 6.1. Properties of a rsc_location Constraint

Field Default Description

id A unique name for the constraint

rsc The name of the resource to which this constraint applies

rsc-pattern A regular expression matching the names of resources
to which this constraint applies, if rsc is not specified;
if the regular expression contains submatches and the
constraint is governed by a rule (see Chapter 8, Rules),
the submatches can be referenced as %0 through %9
in the rule’s score-attribute or a rule expression’s
attribute (since 1.1.16)

node A node’s name

score Positive values indicate a preference for running the
affected resource(s) on this node — the higher the value,
the stronger the preference. Negative values indicate the
resource(s) should avoid this node (a value of -INFINITY
changes "should" to "must").

resource-
discovery

always Whether Pacemaker should perform resource discovery
(that is, check whether the resource is already running)
for this resource on this node. This should normally be
left as the default, so that rogue instances of a service

Asymmetrical "Opt-In" Clusters

43

Field Default Description
can be stopped when they are running where they are
not supposed to be. However, there are two situations
where disabling resource discovery is a good idea: when
a service is not installed on a node, discovery might return
an error (properly written OCF agents will not, so this
is usually only seen with other agent types); and when
Pacemaker Remote is used to scale a cluster to hundreds
of nodes, limiting resource discovery to allowed nodes can
significantly boost performance. (since 1.1.13)

• always: Always perform resource discovery for the
specified resource on this node.

• never: Never perform resource discovery for the
specified resource on this node. This option should
generally be used with a -INFINITY score, although that
is not strictly required.

• exclusive: Perform resource discovery for the
specified resource only on this node (and other nodes
similarly marked as exclusive). Multiple location
constraints using exclusive discovery for the same
resource across different nodes creates a subset of
nodes resource-discovery is exclusive to. If a resource
is marked for exclusive discovery on one or more
nodes, that resource is only allowed to be placed within
that subset of nodes.

Warning

Setting resource-discovery to never or exclusive removes Pacemaker’s ability to detect and
stop unwanted instances of a service running where it’s not supposed to be. It is up to the system
administrator (you!) to make sure that the service can never be active on nodes without resource-
discovery (such as by leaving the relevant software uninstalled).

6.2.2. Asymmetrical "Opt-In" Clusters

To create an opt-in cluster, start by preventing resources from running anywhere by default:

crm_attribute --name symmetric-cluster --update false

Then start enabling nodes. The following fragment says that the web server prefers sles-1, the
database prefers sles-2 and both can fail over to sles-3 if their most preferred node fails.

Example 6.1. Opt-in location constraints for two resources

<constraints>

Chapter 6. Resource Constraints

44

 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
 <rsc_location id="loc-2" rsc="Webserver" node="sles-3" score="0"/>
 <rsc_location id="loc-3" rsc="Database" node="sles-2" score="200"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-3" score="0"/>
</constraints>

6.2.3. Symmetrical "Opt-Out" Clusters

To create an opt-out cluster, start by allowing resources to run anywhere by default:

crm_attribute --name symmetric-cluster --update true

Then start disabling nodes. The following fragment is the equivalent of the above opt-in configuration.

Example 6.2. Opt-out location constraints for two resources

<constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
 <rsc_location id="loc-2-dont-run" rsc="Webserver" node="sles-2" score="-INFINITY"/>
 <rsc_location id="loc-3-dont-run" rsc="Database" node="sles-1" score="-INFINITY"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-2" score="200"/>
</constraints>

6.2.4. What if Two Nodes Have the Same Score
If two nodes have the same score, then the cluster will choose one. This choice may seem random
and may not be what was intended, however the cluster was not given enough information to know
any better.

Example 6.3. Constraints where a resource prefers two nodes equally

<constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="INFINITY"/>
 <rsc_location id="loc-2" rsc="Webserver" node="sles-2" score="INFINITY"/>
 <rsc_location id="loc-3" rsc="Database" node="sles-1" score="500"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-2" score="300"/>
 <rsc_location id="loc-5" rsc="Database" node="sles-2" score="200"/>
</constraints>

In the example above, assuming no other constraints and an inactive cluster, Webserver would
probably be placed on sles-1 and Database on sles-2. It would likely have placed Webserver
based on the node’s uname and Database based on the desire to spread the resource load evenly
across the cluster. However other factors can also be involved in more complex configurations.

6.3. Specifying the Order in which Resources Should Start/
Stop

Ordering constraints tell the cluster the order in which resources should start.

Ordering Properties

45

Important

Ordering constraints affect only the ordering of resources; they do not require that the resources
be placed on the same node. If you want resources to be started on the same node and in a
specific order, you need both an ordering constraint and a colocation constraint (see Section 6.4,
“Placing Resources Relative to other Resources”), or alternatively, a group (see Section 10.1,
“Groups - A Syntactic Shortcut”).

6.3.1. Ordering Properties
Table 6.2. Properties of a rsc_order Constraint

Field Default Description

id A unique name for the constraint

first Name of the resource that the then resource depends on

then Name of the dependent resource

first-
action

start The action that the first resource must complete before
then-action can be initiated for the then resource. Allowed
values: start, stop, promote, demote.

then-
action

value of
first-
action

The action that the then resource can execute only after
the first-action on the first resource has completed.
Allowed values: start, stop, promote, demote.

kind How to enforce the constraint. Allowed values:

• Optional: Just a suggestion. Only applies if both resources
are executing the specified actions. Any change in state by
the first resource will have no effect on the then resource.

• Mandatory: Always. If first does not perform first-
action, then will not be allowed to performed then-
action. If first is restarted, then (if running) will be
stopped beforehand and started afterward.

• Serialize: Ensure that no two stop/start actions occur
concurrently for the resources. First and then can start in
either order, but one must complete starting before the other
can be started. A typical use case is when resource start-up
puts a high load on the host.

symmetrical TRUE If true, the reverse of the constraint applies for the opposite
action (for example, if B starts after A starts, then B stops
before A stops).

Promote and demote apply to the master role of multi-state resources.

6.3.2. Optional and mandatory ordering
Here is an example of ordering constraints where Database must start before Webserver, and IP
should start before Webserver if they both need to be started:

Chapter 6. Resource Constraints

46

Example 6.4. Optional and mandatory ordering constraints

<constraints>
<rsc_order id="order-1" first="IP" then="Webserver" kind="Optional"/>
<rsc_order id="order-2" first="Database" then="Webserver" kind="Mandatory" />
</constraints>

Because the above example lets symmetrical default to TRUE, Webserver must be stopped
before Database can be stopped, and Webserver should be stopped before IP if they both need to
be stopped.

6.4. Placing Resources Relative to other Resources
Colocation constraints tell the cluster that the location of one resource depends on the location of
another one.

Colocation has an important side-effect: it affects the order in which resources are assigned to a node.
Think about it: You can’t place A relative to B unless you know where B is. 1

So when you are creating colocation constraints, it is important to consider whether you should
colocate A with B, or B with A.

Another thing to keep in mind is that, assuming A is colocated with B, the cluster will take into account
A’s preferences when deciding which node to choose for B.

For a detailed look at exactly how this occurs, see Colocation Explained2.

Important

Colocation constraints affect only the placement of resources; they do not require that the
resources be started in a particular order. If you want resources to be started on the same node
and in a specific order, you need both an ordering constraint (see Section 6.3, “Specifying the
Order in which Resources Should Start/Stop”) and a colocation constraint, or alternatively, a
group (see Section 10.1, “Groups - A Syntactic Shortcut”).

6.4.1. Colocation Properties

Table 6.3. Properties of a rsc_colocation Constraint

Field Default Description

id A unique name for the constraint (required).

rsc The name of a resource that should be located relative to
with-rsc (required).

1 While the human brain is sophisticated enough to read the constraint in any order and choose the correct one depending on
the situation, the cluster is not quite so smart. Yet.
2 http://clusterlabs.org/doc/Colocation_Explained.pdf

http://clusterlabs.org/doc/Colocation_Explained.pdf
http://clusterlabs.org/doc/Colocation_Explained.pdf

Mandatory Placement

47

Field Default Description

with-rsc The name of the resource used as the colocation target. The
cluster will decide where to put this resource first and then
decide where to put rsc (required).

node-
attribute

#uname The node attribute that must be the same on the node running
rsc and the node running with-rsc for the constraint to be
satisfied. (For details, see Section 6.4.4, “Colocation by Node
Attribute”.)

score Positive values indicate the resources should run on the same
node. Negative values indicate the resources should run on
different nodes. Values of +/- INFINITY change "should" to
"must".

6.4.2. Mandatory Placement
Mandatory placement occurs when the constraint’s score is +INFINITY or -INFINITY. In
such cases, if the constraint can’t be satisfied, then the rsc resource is not permitted to run. For
score=INFINITY, this includes cases where the with-rsc resource is not active.

If you need resource A to always run on the same machine as resource B, you would add the following
constraint:

Example 6.5. Mandatory colocation constraint for two resources

<rsc_colocation id="colocate" rsc="A" with-rsc="B" score="INFINITY"/>

Remember, because INFINITY was used, if B can’t run on any of the cluster nodes (for whatever
reason) then A will not be allowed to run. Whether A is running or not has no effect on B.

Alternatively, you may want the opposite — that A cannot run on the same machine as B. In this case,
use score="-INFINITY".

Example 6.6. Mandatory anti-colocation constraint for two resources

<rsc_colocation id="anti-colocate" rsc="A" with-rsc="B" score="-INFINITY"/>

Again, by specifying -INFINITY, the constraint is binding. So if the only place left to run is where B
already is, then A may not run anywhere.

As with INFINITY, B can run even if A is stopped. However, in this case A also can run if B is
stopped, because it still meets the constraint of A and B not running on the same node.

6.4.3. Advisory Placement
If mandatory placement is about "must" and "must not", then advisory placement is the "I’d prefer if"
alternative. For constraints with scores greater than -INFINITY and less than INFINITY, the cluster
will try to accommodate your wishes but may ignore them if the alternative is to stop some of the
cluster resources.

As in life, where if enough people prefer something it effectively becomes mandatory, advisory
colocation constraints can combine with other elements of the configuration to behave as if they were
mandatory.

Chapter 6. Resource Constraints

48

Example 6.7. Advisory colocation constraint for two resources

<rsc_colocation id="colocate-maybe" rsc="A" with-rsc="B" score="500"/>

6.4.4. Colocation by Node Attribute
The node+attribute property of a colocation constraints allows you to express the requirement,
"these resources must be on similar nodes".

As an example, imagine that you have two Storage Area Networks (SANs) that are not controlled by
the cluster, and each node is connected to one or the other. You may have two resources r1 and r2
such that r2 needs to use the same SAN as r1, but doesn’t necessarily have to be on the same exact
node. In such a case, you could define a node attribute named san, with the value san1 or san2 on
each node as appropriate. Then, you could colocate r2 with r1 using node-attribute set to san.

6.5. Resource Sets
Resource sets allow multiple resources to be affected by a single constraint.

Example 6.8. A set of 3 resources

<resource_set id="resource-set-example">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
</resource_set>

Resource sets are valid inside rsc_location, rsc_order (see Section 6.6, “Ordering Sets of
Resources”), rsc_colocation (see Section 6.7, “Colocating Sets of Resources”), and rsc_ticket
(see Section 15.3, “Configuring Ticket Dependencies”) constraints.

A resource set has a number of properties that can be set, though not all have an effect in all contexts.

Table 6.4. Properties of a resource_set

Field Default Description

id A unique name for the set

sequential true Whether the members of the set must be acted on in order.
Meaningful within rsc_order and rsc_colocation.

require-all true Whether all members of the set must be active before
continuing. With the current implementation, the cluster
may continue even if only one member of the set is started,
but if more than one member of the set is starting at
the same time, the cluster will still wait until all of those
have started before continuing (this may change in future
versions). Meaningful within rsc_order. (since 1.1.7)

role Limit the effect of the constraint to the specified role.
Meaningful within rsc_location, rsc_colocation and
rsc_ticket.

action Limit the effect of the constraint to the specified action.
Meaningful within rsc_order.

Ordering Sets of Resources

49

Field Default Description

score Advanced use only. Use a specific score for this set within
the constraint.

6.6. Ordering Sets of Resources
A common situation is for an administrator to create a chain of ordered resources, such as:

Example 6.9. A chain of ordered resources

<constraints>
 <rsc_order id="order-1" first="A" then="B" />
 <rsc_order id="order-2" first="B" then="C" />
 <rsc_order id="order-3" first="C" then="D" />
</constraints>

Figure 6.1. Visual representation of the four resources' start order for the above constraints

6.6.1. Ordered Set
To simplify this situation, resource sets (see Section 6.5, “Resource Sets”) can be used within ordering
constraints:

Example 6.10. A chain of ordered resources expressed as a set

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-example" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
</constraints>

While the set-based format is not less verbose, it is significantly easier to get right and maintain.

Important

If you use a higher-level tool, pay attention to how it exposes this functionality. Depending on the
tool, creating a set A B may be equivalent to A then B, or B then A.

Chapter 6. Resource Constraints

50

6.6.2. Ordering Multiple Sets
The syntax can be expanded to allow sets of resources to be ordered relative to each other, where
the members of each individual set may be ordered or unordered (controlled by the sequential
property). In the example below, A and B can both start in parallel, as can C and D, however C and D
can only start once both A and B are active.

Example 6.11. Ordered sets of unordered resources

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="false">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
 </constraints>

Figure 6.2. Visual representation of the start order for two ordered sets of unordered resources

Of course either set — or both sets — of resources can also be internally ordered (by setting
sequential="true") and there is no limit to the number of sets that can be specified.

Example 6.12. Advanced use of set ordering - Three ordered sets, two of which are internally
unordered

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="true">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>

Resource Set OR Logic

51

 <resource_set id="ordered-set-3" sequential="false">
 <resource_ref id="E"/>
 <resource_ref id="F"/>
 </resource_set>
 </rsc_order>
</constraints>

Figure 6.3. Visual representation of the start order for the three sets defined above

Important

An ordered set with sequential=false makes sense only if there is another set in the
constraint. Otherwise, the constraint has no effect.

6.6.3. Resource Set OR Logic
The unordered set logic discussed so far has all been "AND" logic. To illustrate this take the 3
resource set figure in the previous section. Those sets can be expressed, (A and B) then (C)
then (D) then (E and F).

Say for example we want to change the first set, (A and B), to use "OR" logic so the sets look like
this: (A or B) then (C) then (D) then (E and F). This functionality can be achieved
through the use of the require-all option. This option defaults to TRUE which is why the "AND"
logic is used by default. Setting require-all=false means only one resource in the set needs to
be started before continuing on to the next set.

Example 6.13. Resource Set "OR" logic: Three ordered sets, where the first set is internally
unordered with "OR" logic

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false" require-all="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="true">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 <resource_set id="ordered-set-3" sequential="false">
 <resource_ref id="E"/>
 <resource_ref id="F"/>
 </resource_set>

Chapter 6. Resource Constraints

52

 </rsc_order>
</constraints>

Important

An ordered set with require-all=false makes sense only in conjunction with
sequential=false. Think of it like this: sequential=false modifies the set to be an
unordered set using "AND" logic by default, and adding require-all=false flips the
unordered set’s "AND" logic to "OR" logic.

6.7. Colocating Sets of Resources
Another common situation is for an administrator to create a set of colocated resources.

One way to do this would be to define a resource group (see Section 10.1, “Groups - A Syntactic
Shortcut”), but that cannot always accurately express the desired state.

Another way would be to define each relationship as an individual constraint, but that causes a
constraint explosion as the number of resources and combinations grow. An example of this approach:

Example 6.14. Chain of colocated resources

<constraints>
 <rsc_colocation id="coloc-1" rsc="D" with-rsc="C" score="INFINITY"/>
 <rsc_colocation id="coloc-2" rsc="C" with-rsc="B" score="INFINITY"/>
 <rsc_colocation id="coloc-3" rsc="B" with-rsc="A" score="INFINITY"/>
</constraints>

To make things easier, resource sets (see Section 6.5, “Resource Sets”) can be used within colocation
constraints. As with the chained version, a resource that can’t be active prevents any resource that
must be colocated with it from being active. For example, if B is not able to run, then both C and by
inference D must also remain stopped. Here is an example resource_set:

Example 6.15. Equivalent colocation chain expressed using resource_set

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="colocated-set-example" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
</constraints>

Colocating Sets of Resources

53

Important

If you use a higher-level tool, pay attention to how it exposes this functionality. Depending on the
tool, creating a set A B may be equivalent to A with B, or B with A.

This notation can also be used to tell the cluster that sets of resources must be colocated relative to
each other, where the individual members of each set may or may not depend on each other being
active (controlled by the sequential property).

In this example, A, B, and C will each be colocated with D. D must be active, but any of A, B, or C may
be inactive without affecting any other resources.

Example 6.16. Using colocated sets to specify a common peer

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="colocated-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 </resource_set>
 <resource_set id="colocated-set-2" sequential="true">
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
</constraints>

Important

A colocated set with sequential=false makes sense only if there is another set in the
constraint. Otherwise, the constraint has no effect.

There is no inherent limit to the number and size of the sets used. The only thing that matters is that in
order for any member of one set in the constraint to be active, all members of sets listed after it must
also be active (and naturally on the same node); and if a set has sequential="true", then in order
for one member of that set to be active, all members listed before it must also be active.

If desired, you can restrict the dependency to instances of multistate resources that are in a specific
role, using the set’s role property.

Example 6.17. Colocation chain in which the members of the middle set have no interdependencies,
and the last listed set (which the cluster places first) is restricted to instances in master status.

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="colocated-set-1" sequential="true">
 <resource_ref id="B"/>
 <resource_ref id="A"/>
 </resource_set>

Chapter 6. Resource Constraints

54

 <resource_set id="colocated-set-2" sequential="false">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 <resource_ref id="E"/>
 </resource_set>
 <resource_set id="colocated-set-3" sequential="true" role="Master">
 <resource_ref id="G"/>
 <resource_ref id="F"/>
 </resource_set>
 </rsc_colocation>
</constraints>

Figure 6.4. Visual representation the above example (resources to the left are placed first)

Note

Pay close attention to the order in which resources and sets are listed. While the colocation
dependency for members of any one set is last-to-first, the colocation dependency for multiple
sets is first-to-last. In the above example, B is colocated with A, but colocated-set-1 is
colocated with colocated-set-2.

Unlike ordered sets, colocated sets do not use the require-all option.

Chapter 7.

55

Alerts

Table of Contents
7.1. Alert Agents .. 55
7.2. Alert Recipients ... 55
7.3. Alert Meta-Attributes .. 56
7.4. Alert Instance Attributes .. 56
7.5. Alert Filters ... 57
7.6. Using the Sample Alert Agents .. 58
7.7. Writing an Alert Agent ... 58

Alerts (available since Pacemaker 1.1.15) may be configured to take some external action when a
cluster event occurs (node failure, resource starting or stopping, etc.).

7.1. Alert Agents
As with resource agents, the cluster calls an external program (an alert agent) to handle alerts. The
cluster passes information about the event to the agent via environment variables. Agents can do
anything desired with this information (send an e-mail, log to a file, update a monitoring system, etc.).

Example 7.1. Simple alert configuration

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh" />
 </alerts>
</configuration>

In the example above, the cluster will call my-script.sh for each event.

Multiple alert agents may be configured; the cluster will call all of them for each event.

Alert agents will be called only on cluster nodes. They will be called for events involving Pacemaker
Remote nodes, but they will never be called on those nodes.

7.2. Alert Recipients
Usually alerts are directed towards a recipient. Thus each alert may be additionally configured with
one or more recipients. The cluster will call the agent separately for each recipient.

Example 7.2. Alert configuration with recipient

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <recipient id="my-alert-recipient" value="some-address"/>
 </alert>
 </alerts>
</configuration>

Chapter 7. Alerts

56

In the above example, the cluster will call my-script.sh for each event, passing the recipient some-
address as an environment variable.

The recipient may be anything the alert agent can recognize — an IP address, an e-mail address, a file
name, whatever the particular agent supports.

7.3. Alert Meta-Attributes
As with resource agents, meta-attributes can be configured for alert agents to affect how Pacemaker
calls them.

Table 7.1. Meta-Attributes of an Alert

Meta-Attribute Default Description

timestamp-format %H:%M:%S.%06N Format the cluster will use when sending the
event’s timestamp to the agent. This is a string
as used with the date(1) command.

timeout 30s If the alert agent does not complete within this
amount of time, it will be terminated.

Meta-attributes can be configured per alert agent and/or per recipient.

Example 7.3. Alert configuration with meta-attributes

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <meta_attributes id="my-alert-attributes">
 <nvpair id="my-alert-attributes-timeout" name="timeout"
 value="15s"/>
 </meta_attributes>
 <recipient id="my-alert-recipient1" value="someuser@example.com">
 <meta_attributes id="my-alert-recipient1-attributes">
 <nvpair id="my-alert-recipient1-timestamp-format"
 name="timestamp-format" value="%D %H:%M"/>
 </meta_attributes>
 </recipient>
 <recipient id="my-alert-recipient2" value="otheruser@example.com">
 <meta_attributes id="my-alert-recipient2-attributes">
 <nvpair id="my-alert-recipient2-timestamp-format"
 name="timestamp-format" value="%c"/>
 </meta_attributes>
 </recipient>
 </alert>
 </alerts>
</configuration>

In the above example, the my-script.sh will get called twice for each event, with each call using a
15-second timeout. One call will be passed the recipient someuser@example.com and a timestamp
in the format %D %H:%M, while the other call will be passed the recipient otheruser@example.com
and a timestamp in the format %c.

7.4. Alert Instance Attributes
As with resource agents, agent-specific configuration values may be configured as instance attributes.
These will be passed to the agent as additional environment variables. The number, names and
allowed values of these instance attributes are completely up to the particular agent.

Alert Filters

57

Example 7.4. Alert configuration with instance attributes

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <meta_attributes id="my-alert-attributes">
 <nvpair id="my-alert-attributes-timeout" name="timeout"
 value="15s"/>
 </meta_attributes>
 <instance_attributes id="my-alert-options">
 <nvpair id="my-alert-options-debug" name="debug" value="false"/>
 </instance_attributes>
 <recipient id="my-alert-recipient1" value="someuser@example.com"/>
 </alert>
 </alerts>
</configuration>

7.5. Alert Filters
By default, an alert agent will be called for node events, fencing events, and resource events. An
agent may choose to ignore certain types of events, but there is still the overhead of calling it for those
events. To eliminate that overhead, you may select which types of events the agent should receive
(since version 1.1.18).

Example 7.5. Alert configuration to receive only node events and fencing events

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <select>
 <select_nodes />
 <select_fencing />
 </select>
 <recipient id="my-alert-recipient1" value="someuser@example.com"/>
 </alert>
 </alerts>
</configuration>

The possible options within <select> are <select_nodes>, <select_fencing>,
<select_resources>, and <select_attributes>.

With <select_attributes> (the only event type not enabled by default), the agent will receive
alerts when a node attribute changes. If you wish the agent to be called only when certain attributes
change, you can configure that as well.

Example 7.6. Alert configuration to be called when certain node attributes change

<configuration>
 <alerts>
 <alert id="my-alert" path="/path/to/my-script.sh">
 <select>
 <select_attributes>
 <attribute id="alert-standby" name="standby" />
 <attribute id="alert-shutdown" name="shutdown" />
 </select_attributes>
 </select>
 <recipient id="my-alert-recipient1" value="someuser@example.com"/>
 </alert>

Chapter 7. Alerts

58

 </alerts>
</configuration>

Node attribute alerts are currently considered experimental. Alerts may be limited to attributes set via
attrd_updater, and agents may be called multiple times with the same attribute value.

7.6. Using the Sample Alert Agents
Pacemaker provides several sample alert agents, installed in /usr/share/pacemaker/alerts by
default.

While these sample scripts may be copied and used as-is, they are provided mainly as templates to be
edited to suit your purposes. See their source code for the full set of instance attributes they support.

Example 7.7. Sending cluster events as SNMP traps

<configuration>
 <alerts>
 <alert id="snmp_alert" path="/path/to/alert_snmp.sh">
 <instance_attributes id="config_for_alert_snmp">
 <nvpair id="trap_node_states" name="trap_node_states" value="all"/>
 </instance_attributes>
 <meta_attributes id="config_for_timestamp">
 <nvpair id="ts_fmt" name="timestamp-format"
 value="%Y-%m-%d,%H:%M:%S.%01N"/>
 </meta_attributes>
 <recipient id="snmp_destination" value="192.168.1.2"/>
 </alert>
 </alerts>
</configuration>

Example 7.8. Sending cluster events as e-mails

 <configuration>
 <alerts>
 <alert id="smtp_alert" path="/path/to/alert_smtp.sh">
 <instance_attributes id="config_for_alert_smtp">
 <nvpair id="email_sender" name="email_sender"
 value="donotreply@example.com"/>
 </instance_attributes>
 <recipient id="smtp_destination" value="admin@example.com"/>
 </alert>
 </alerts>
 </configuration>

7.7. Writing an Alert Agent

Table 7.2. Environment variables passed to alert agents

Environment Variable Description

CRM_alert_kind The type of alert (node, fencing, resource, or attribute)

CRM_alert_version The version of Pacemaker sending the alert

CRM_alert_recipient The configured recipient

Writing an Alert Agent

59

Environment Variable Description

CRM_alert_node_sequence A sequence number increased whenever an alert is being
issued on the local node, which can be used to reference the
order in which alerts have been issued by Pacemaker. An alert
for an event that happened later in time reliably has a higher
sequence number than alerts for earlier events. Be aware that
this number has no cluster-wide meaning.

CRM_alert_timestamp A timestamp created prior to executing the agent, in the format
specified by the timestamp-format meta-attribute. This
allows the agent to have a reliable, high-precision time of when
the event occurred, regardless of when the agent itself was
invoked (which could potentially be delayed due to system
load, etc.).

CRM_alert_node Name of affected node

CRM_alert_desc Detail about event. For node alerts, this is the node’s
current state (member or lost). For fencing alerts, this
is a summary of the requested fencing operation, including
origin, target, and fencing operation error code, if any. For
resource alerts, this is a readable string equivalent of
CRM_alert_status.

CRM_alert_nodeid ID of node whose status changed (provided with node alerts
only)

CRM_alert_task The requested fencing or resource operation (provided with
fencing and resource alerts only)

CRM_alert_rc The numerical return code of the fencing or resource operation
(provided with fencing and resource alerts only)

CRM_alert_rsc The name of the affected resource (resource alerts only)

CRM_alert_interval The interval of the resource operation (resource alerts only)

CRM_alert_target_rc The expected numerical return code of the operation
(resource alerts only)

CRM_alert_status A numerical code used by Pacemaker to represent the
operation result (resource alerts only)

CRM_alert_attribute_nameThe name of the node attribute that changed (attribute
alerts only)

CRM_alert_attribute_valueThe new value of the node attribute that changed (attribute
alerts only)

Special concerns when writing alert agents:

• Alert agents may be called with no recipient (if none is configured), so the agent must be able to
handle this situation, even if it only exits in that case. (Users may modify the configuration in stages,
and add a recipient later.)

• If more than one recipient is configured for an alert, the alert agent will be called once per recipient.
If an agent is not able to run concurrently, it should be configured with only a single recipient. The
agent is free, however, to interpret the recipient as a list.

• When a cluster event occurs, all alerts are fired off at the same time as separate processes.
Depending on how many alerts and recipients are configured, and on what is done within the alert
agents, a significant load burst may occur. The agent could be written to take this into consideration,

Chapter 7. Alerts

60

for example by queueing resource-intensive actions into some other instance, instead of directly
executing them.

• Alert agents are run as the hacluster user, which has a minimal set of permissions. If an agent
requires additional privileges, it is recommended to configure sudo to allow the agent to run the
necessary commands as another user with the appropriate privileges.

• As always, take care to validate and sanitize user-configured parameters, such as
CRM_alert_timestamp (whose content is specified by the user-configured timestamp-format),
CRM_alert_recipient, and all instance attributes. Mostly this is needed simply to protect against
configuration errors, but if some user can modify the CIB without having hacluster-level access to
the cluster nodes, it is a potential security concern as well, to avoid the possibility of code injection.

Note

The alerts interface is designed to be backward compatible with the external scripts interface
used by the ocf:pacemaker:ClusterMon resource, which is now deprecated. To preserve
this compatibility, the environment variables passed to alert agents are available prepended
with CRM_notify_ as well as CRM_alert_. One break in compatibility is that ClusterMon ran
external scripts as the root user, while alert agents are run as the hacluster user.

Chapter 8.

61

Rules

Table of Contents
8.1. Rule Properties ... 61
8.2. Node Attribute Expressions ... 62
8.3. Time- and Date-Based Expressions ... 63

8.3.1. Date Specifications ... 64
8.3.2. Durations ... 64
8.3.3. Sample Time-Based Expressions .. 64

8.4. Using Rules to Determine Resource Location ... 66
8.4.1. Location Rules Based on Other Node Properties ... 66
8.4.2. Using score-attribute Instead of score ... 67

8.5. Using Rules to Control Resource Options .. 67
8.6. Using Rules to Control Cluster Options .. 68
8.7. Ensuring Time-Based Rules Take Effect .. 69

Rules can be used to make your configuration more dynamic. One common example is to set one
value for resource-stickiness during working hours, to prevent resources from being moved
back to their most preferred location, and another on weekends when no-one is around to notice an
outage.

Another use of rules might be to assign machines to different processing groups (using a node
attribute) based on time and to then use that attribute when creating location constraints.

Each rule can contain a number of expressions, date-expressions and even other rules. The results of
the expressions are combined based on the rule’s boolean-op field to determine if the rule ultimately
evaluates to true or false. What happens next depends on the context in which the rule is being
used.

8.1. Rule Properties
Table 8.1. Properties of a Rule

Field Default Description

id A unique name for the rule (required)

role Started Limits the rule to apply only when the resource is in the
specified role. Allowed values are Started, Slave, and
Master. A rule with role="Master" cannot determine
the initial location of a clone instance and will only affect
which of the active instances will be promoted.

score The score to apply if the rule evaluates to true. Limited to
use in rules that are part of location constraints.

score-attribute The node attribute to look up and use as a score if the rule
evaluates to true. Limited to use in rules that are part of
location constraints.

boolean-op and How to combine the result of multiple expression objects.
Allowed values are and and or.

Chapter 8. Rules

62

8.2. Node Attribute Expressions

Expression objects are used to control a resource based on the attributes defined by a node or nodes.

Table 8.2. Properties of an Expression

Field Default Description

id A unique name for the expression (required)

attribute The node attribute to test (required)

type string Determines how the value(s) should be tested. Allowed
values are string, integer, and version.

operation The comparison to perform (required). Allowed values:

• lt: True if the value of the node’s attribute is less
than value

• gt: True if the value of the node’s attribute is
greater than value

• lte: True if the value of the node’s attribute is less
than or equal to value

• gte: True if the value of the node’s attribute is
greater than or equal to value

• eq: True if the value of the node’s attribute is equal
to value

• ne: True if the value of the node’s attribute is not
equal to value

• defined: True if the node has the named attribute

• not_defined: True if the node does not have the
named attribute

value User-supplied value for comparison (required)

value-source literal How the value is derived (since 1.1.17). Allowed values:

• literal: value is a literal string to compare against

• param: value is the name of a resource parameter to
compare against (only valid in location constraints)

• meta: value is the name of a resource meta-attribute to
compare against (only valid in location constraints)

In addition to any attributes added by the administrator, the cluster defines special, built-in node
attributes for each node that can also be used.

Table 8.3. Built-in node attributes

Name Value

#uname Node name

#id Node ID

Time- and Date-Based Expressions

63

Name Value

#kind Node type. Possible values are cluster, remote, and container.
Kind is remote for Pacemaker Remote nodes created with the
ocf:pacemaker:remote resource, and container for Pacemaker Remote
guest nodes and bundle nodes (since 1.1.13)

#is_dc "true" if this node is a Designated Controller (DC), "false" otherwise

#cluster-
name

The value of the cluster-name cluster property, if set

#site-name The value of the site-name cluster property, if set, otherwise identical to
#cluster-name

#role The role the relevant multistate resource has on this node. Valid only within a
rule for a location constraint for a multistate resource.

8.3. Time- and Date-Based Expressions

As the name suggests, date_expressions are used to control a resource or cluster option
based on the current date/time. They may contain an optional date_spec and/or duration object
depending on the context.

Table 8.4. Properties of a Date Expression

Field Description

start A date/time conforming to the ISO86011 specification.

end A date/time conforming to the ISO86012 specification. Can be
inferred by supplying a value for start and a duration.

operation Compares the current date/time with the start and/or end date,
depending on the context. Allowed values:

• gt: True if the current date/time is after start

• lt: True if the current date/time is before end

• in_range: True if the current date/time is after start and
before end

• date_spec: True if the current date/time matches a
date_spec object (described below)

Note

As these comparisons (except for date_spec) include the time, the eq, neq, gte and lte
operators have not been implemented since they would only be valid for a single second.

1 http://en.wikipedia.org/wiki/ISO_8601
2 http://en.wikipedia.org/wiki/ISO_8601

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Chapter 8. Rules

64

8.3.1. Date Specifications

date_spec objects are used to create cron-like expressions relating to time. Each field can contain a
single number or a single range. Instead of defaulting to zero, any field not supplied is ignored.

For example, monthdays="1" matches the first day of every month and hours="09-17" matches
the hours between 9am and 5pm (inclusive). At this time, multiple ranges (e.g. weekdays="1,2" or
weekdays="1-2,5-6") are not supported; depending on demand, this might be implemented in a
future release.

Table 8.5. Properties of a Date Specification

Field Description

id A unique name for the object

hours Allowed values: 0-23

monthdays Allowed values: 1-31 (depending on month and year)

weekdays Allowed values: 1-7 (1=Monday, 7=Sunday)

yeardays Allowed values: 1-366 (depending on the year)

months Allowed values: 1-12

weeks Allowed values: 1-53 (depending on weekyear)

years Year according to the Gregorian calendar

weekyears Year in which the week started; e.g. 1 January 2005 can be
specified as 2005-001 Ordinal, 2005-01-01 Gregorian or 2004-
W53-6 Weekly and thus would match years="2005" or
weekyears="2004"

moon Allowed values are 0-7 (0 is new, 4 is full moon). Seriously, you
can use this. This was implemented to demonstrate the ease with
which new comparisons could be added.

8.3.2. Durations

Durations are used to calculate a value for end when one is not supplied to in_range operations.
They contain the same fields as date_spec objects but without the limitations (e.g. you can have a
duration of 19 months). As with date_specs, any field not supplied is ignored.

8.3.3. Sample Time-Based Expressions
A small sample of how time-based expressions can be used:

Example 8.1. True if now is any time in the year 2005

<rule id="rule1">
 <date_expression id="date_expr1" start="2005-001" operation="in_range">
 <duration years="1"/>
 </date_expression>
</rule>

Sample Time-Based Expressions

65

Example 8.2. Equivalent expression

<rule id="rule2">
 <date_expression id="date_expr2" operation="date_spec">
 <date_spec years="2005"/>
 </date_expression>
</rule>

Example 8.3. 9am-5pm Monday-Friday

<rule id="rule3">
 <date_expression id="date_expr3" operation="date_spec">
 <date_spec hours="9-16" days="1-5"/>
 </date_expression>
</rule>

Please note that the 16 matches up to 16:59:59, as the numeric value (hour) still matches!

Example 8.4. 9am-6pm Monday through Friday or anytime Saturday

<rule id="rule4" boolean-op="or">
 <date_expression id="date_expr4-1" operation="date_spec">
 <date_spec hours="9-16" days="1-5"/>
 </date_expression>
 <date_expression id="date_expr4-2" operation="date_spec">
 <date_spec days="6"/>
 </date_expression>
</rule>

Example 8.5. 9am-5pm or 9pm-12am Monday through Friday

<rule id="rule5" boolean-op="and">
 <rule id="rule5-nested1" boolean-op="or">
 <date_expression id="date_expr5-1" operation="date_spec">
 <date_spec hours="9-16"/>
 </date_expression>
 <date_expression id="date_expr5-2" operation="date_spec">
 <date_spec hours="21-23"/>
 </date_expression>
 </rule>
 <date_expression id="date_expr5-3" operation="date_spec">
 <date_spec days="1-5"/>
 </date_expression>
 </rule>

Example 8.6. Mondays in March 2005

<rule id="rule6" boolean-op="and">
 <date_expression id="date_expr6-1" operation="date_spec">
 <date_spec weekdays="1"/>
 </date_expression>
 <date_expression id="date_expr6-2" operation="in_range"
 start="2005-03-01" end="2005-04-01"/>
 </rule>

Chapter 8. Rules

66

Note

Because no time is specified with the above dates, 00:00:00 is implied. This means that
the range includes all of 2005-03-01 but none of 2005-04-01. You may wish to write
end="2005-03-31T23:59:59" to avoid confusion.

Example 8.7. A full moon on Friday the 13th

<rule id="rule7" boolean-op="and">
 <date_expression id="date_expr7" operation="date_spec">
 <date_spec weekdays="5" monthdays="13" moon="4"/>
 </date_expression>
</rule>

8.4. Using Rules to Determine Resource Location

A location constraint may contain rules. When the constraint’s outermost rule evaluates to false,
the cluster treats the constraint as if it were not there. When the rule evaluates to true, the node’s
preference for running the resource is updated with the score associated with the rule.

If this sounds familiar, it is because you have been using a simplified syntax for location constraint
rules already. Consider the following location constraint:

Example 8.8. Prevent myApacheRsc from running on c001n03

<rsc_location id="dont-run-apache-on-c001n03" rsc="myApacheRsc"
 score="-INFINITY" node="c001n03"/>

This constraint can be more verbosely written as:

Example 8.9. Prevent myApacheRsc from running on c001n03 - expanded version

<rsc_location id="dont-run-apache-on-c001n03" rsc="myApacheRsc">
 <rule id="dont-run-apache-rule" score="-INFINITY">
 <expression id="dont-run-apache-expr" attribute="#uname"
 operation="eq" value="c00n03"/>
 </rule>
</rsc_location>

The advantage of using the expanded form is that one can then add extra clauses to the rule, such as
limiting the rule such that it only applies during certain times of the day or days of the week.

8.4.1. Location Rules Based on Other Node Properties
The expanded form allows us to match on node properties other than its name. If we rated each
machine’s CPU power such that the cluster had the following nodes section:

Using score-attribute Instead of score

67

Example 8.10. A sample nodes section for use with score-attribute

<nodes>
 <node id="uuid1" uname="c001n01" type="normal">
 <instance_attributes id="uuid1-custom_attrs">
 <nvpair id="uuid1-cpu_mips" name="cpu_mips" value="1234"/>
 </instance_attributes>
 </node>
 <node id="uuid2" uname="c001n02" type="normal">
 <instance_attributes id="uuid2-custom_attrs">
 <nvpair id="uuid2-cpu_mips" name="cpu_mips" value="5678"/>
 </instance_attributes>
 </node>
</nodes>

then we could prevent resources from running on underpowered machines with this rule:

<rule id="need-more-power-rule" score="-INFINITY">
 <expression id="need-more-power-expr" attribute="cpu_mips"
 operation="lt" value="3000"/>
</rule>

8.4.2. Using score-attribute Instead of score
When using score-attribute instead of score, each node matched by the rule has its score
adjusted differently, according to its value for the named node attribute. Thus, in the previous example,
if a rule used score-attribute="cpu_mips", c001n01 would have its preference to run the
resource increased by 1234 whereas c001n02 would have its preference increased by 5678.

8.5. Using Rules to Control Resource Options
Often some cluster nodes will be different from their peers. Sometimes, these differences — e.g. the
location of a binary or the names of network interfaces — require resources to be configured differently
depending on the machine they’re hosted on.

By defining multiple instance_attributes objects for the resource and adding a rule to each, we
can easily handle these special cases.

In the example below, mySpecialRsc will use eth1 and port 9999 when run on node1, eth2 and port
8888 on node2 and default to eth0 and port 9999 for all other nodes.

Example 8.11. Defining different resource options based on the node name

<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
 <instance_attributes id="special-node1" score="3">
 <rule id="node1-special-case" score="INFINITY" >
 <expression id="node1-special-case-expr" attribute="#uname"
 operation="eq" value="node1"/>
 </rule>
 <nvpair id="node1-interface" name="interface" value="eth1"/>
 </instance_attributes>
 <instance_attributes id="special-node2" score="2" >
 <rule id="node2-special-case" score="INFINITY">
 <expression id="node2-special-case-expr" attribute="#uname"
 operation="eq" value="node2"/>
 </rule>

Chapter 8. Rules

68

 <nvpair id="node2-interface" name="interface" value="eth2"/>
 <nvpair id="node2-port" name="port" value="8888"/>
 </instance_attributes>
 <instance_attributes id="defaults" score="1" >
 <nvpair id="default-interface" name="interface" value="eth0"/>
 <nvpair id="default-port" name="port" value="9999"/>
 </instance_attributes>
</primitive>

The order in which instance_attributes objects are evaluated is determined by their score
(highest to lowest). If not supplied, score defaults to zero, and objects with an equal score are
processed in listed order. If the instance_attributes object has no rule or a rule that evaluates
to true, then for any parameter the resource does not yet have a value for, the resource will use the
parameter values defined by the instance_attributes.

For example, given the configuration above, if the resource is placed on node1:

1. special-node1 has the highest score (3) and so is evaluated first; its rule evaluates to true, so
interface is set to eth1.

2. special-node2 is evaluated next with score 2, but its rule evaluates to false, so it is ignored.

3. defaults is evaluated last with score 1, and has no rule, so its values are examined;
interface is already defined, so the value here is not used, but port is not yet defined, so
port is set to 9999.

8.6. Using Rules to Control Cluster Options

Controlling cluster options is achieved in much the same manner as specifying different resource
options on different nodes.

The difference is that because they are cluster options, one cannot (or should not, because they
won’t work) use attribute-based expressions. The following example illustrates how to set a different
resource-stickiness value during and outside work hours. This allows resources to automatically
move back to their most preferred hosts, but at a time that (in theory) does not interfere with business
activities.

Example 8.12. Change resource-stickiness during working hours

<rsc_defaults>
 <meta_attributes id="core-hours" score="2">
 <rule id="core-hour-rule" score="0">
 <date_expression id="nine-to-five-Mon-to-Fri" operation="date_spec">
 <date_spec id="nine-to-five-Mon-to-Fri-spec" hours="9-16" weekdays="1-5"/>
 </date_expression>
 </rule>
 <nvpair id="core-stickiness" name="resource-stickiness" value="INFINITY"/>
 </meta_attributes>
 <meta_attributes id="after-hours" score="1" >
 <nvpair id="after-stickiness" name="resource-stickiness" value="0"/>
 </meta_attributes>
</rsc_defaults>

Ensuring Time-Based Rules Take Effect

69

8.7. Ensuring Time-Based Rules Take Effect
A Pacemaker cluster is an event-driven system. As such, it won’t recalculate the best place for
resources to run unless something (like a resource failure or configuration change) happens. This
can mean that a location constraint that only allows resource X to run between 9am and 5pm is not
enforced.

If you rely on time-based rules, the cluster-recheck-interval cluster option (which defaults to
15 minutes) is essential. This tells the cluster to periodically recalculate the ideal state of the cluster.

For example, if you set cluster-recheck-interval="5m", then sometime between 09:00 and
09:05 the cluster would notice that it needs to start resource X, and between 17:00 and 17:05 it would
realize that X needed to be stopped. The timing of the actual start and stop actions depends on what
other actions the cluster may need to perform first.

70

Chapter 9.

71

Advanced Configuration

Table of Contents
9.1. Connecting from a Remote Machine .. 71
9.2. Specifying When Recurring Actions are Performed ... 72
9.3. Handling Resource Failure .. 72

9.3.1. Failure Counts ... 72
9.3.2. Failure Response ... 73

9.4. Moving Resources .. 74
9.4.1. Moving Resources Manually ... 74
9.4.2. Moving Resources Due to Connectivity Changes ... 76
9.4.3. Migrating Resources ... 79

9.5. Tracking Node Health ... 80
9.5.1. Node Health Attributes ... 80
9.5.2. Node Health Strategy ... 80
9.5.3. Measuring Node Health .. 81

9.6. Reloading Services After a Definition Change .. 81

9.1. Connecting from a Remote Machine

Provided Pacemaker is installed on a machine, it is possible to connect to the cluster even if the
machine itself is not in the same cluster. To do this, one simply sets up a number of environment
variables and runs the same commands as when working on a cluster node.

Table 9.1. Environment Variables Used to Connect to Remote Instances of the CIB

Environment
Variable

Default Description

CIB_user $USER The user to connect as. Needs to be part of the
haclient group on the target host.

CIB_passwd The user’s password. Read from the command line if
unset.

CIB_server localhost The host to contact

CIB_port The port on which to contact the server; required.

CIB_encrypted TRUE Whether to encrypt network traffic

So, if c001n01 is an active cluster node and is listening on port 1234 for connections, and someuser
is a member of the haclient group, then the following would prompt for someuser's password and
return the cluster’s current configuration:

export CIB_port=1234; export CIB_server=c001n01; export CIB_user=someuser;
cibadmin -Q

For security reasons, the cluster does not listen for remote connections by default. If you wish to
allow remote access, you need to set the remote-tls-port (encrypted) or remote-clear-port
(unencrypted) CIB properties (i.e., those kept in the cib tag, like num_updates and epoch).

Chapter 9. Advanced Configuration

72

Table 9.2. Extra top-level CIB properties for remote access

Field Default Description

remote-tls-
port

none Listen for encrypted remote connections on this port.

remote-
clear-port

none Listen for plaintext remote connections on this port.

9.2. Specifying When Recurring Actions are Performed
By default, recurring actions are scheduled relative to when the resource started. So if your resource
was last started at 14:32 and you have a backup set to be performed every 24 hours, then the backup
will always run in the middle of the business day — hardly desirable.

To specify a date and time that the operation should be relative to, set the operation’s interval-
origin. The cluster uses this point to calculate the correct start-delay such that the operation will
occur at origin + (interval * N).

So, if the operation’s interval is 24h, its interval-origin is set to 02:00 and it is currently 14:32, then the
cluster would initiate the operation with a start delay of 11 hours and 28 minutes. If the resource is
moved to another node before 2am, then the operation is cancelled.

The value specified for interval and interval-origin can be any date/time conforming to the
ISO8601 standard1. By way of example, to specify an operation that would run on the first Monday of
2009 and every Monday after that, you would add:

Example 9.1. Specifying a Base for Recurring Action Intervals

<op id="my-weekly-action" name="custom-action" interval="P7D" interval-origin="2009-
W01-1"/>

9.3. Handling Resource Failure
By default, Pacemaker will attempt to recover failed resources by restarting them. However, failure
recovery is highly configurable.

9.3.1. Failure Counts
Pacemaker tracks resource failures for each combination of node, resource, and operation (start, stop,
monitor, etc.).

You can query the fail count for a particular node, resource, and/or operation using the
crm_failcount command. For example, to see how many times the 10-second monitor for myrsc
has failed on node1, run:

crm_failcount --query -r myrsc -N node1 -n monitor -I 10s

If you omit the node, crm_failcount will use the local node. If you omit the operation and interval,
crm_failcount will display the sum of the fail counts for all operations on the resource.

You can use crm_resource --cleanup or crm_failcount --delete to clear fail counts. For
example, to clear the above monitor failures, run:

1 http://en.wikipedia.org/wiki/ISO_8601

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Failure Response

73

crm_resource --cleanup -r myrsc -N node1 -n monitor -I 10s

If you omit the resource, crm_resource --cleanup will clear failures for all resources. If you omit
the node, it will clear failures on all nodes. If you omit the operation and interval, it will clear the failures
for all operations on the resource.

Note

Even when cleaning up only a single operation, all failed operations will disappear from the status
display. This allows us to trigger a re-check of the resource’s current status.

Higher-level tools may provide other commands for querying and clearing fail counts.

The crm_mon tool shows the current cluster status, including any failed operations. To see the current
fail counts for any failed resources, call crm_mon with the --failcounts option. This shows the fail
counts per resource (that is, the sum of any operation fail counts for the resource).

9.3.2. Failure Response
Normally, if a running resource fails, pacemaker will try to stop it and start it again. Pacemaker will
choose the best location to start it each time, which may be the same node that it failed on.

However, if a resource fails repeatedly, it is possible that there is an underlying problem on that
node, and you might desire trying a different node in such a case. Pacemaker allows you to set your
preference via the migration-threshold resource meta-attribute. 2

If you define migration-threshold=N for a resource, it will be banned from the original node after
N failures.

Note

The migration-threshold is per resource, even though fail counts are tracked per operation.
The operation fail counts are added together to compare against the migration-threshold.

By default, fail counts remain until manually cleared by an administrator using crm_resource --
cleanup or crm_failcount --delete (hopefully after first fixing the failure’s cause). It is possible
to have fail counts expire automatically by setting the failure-timeout resource meta-attribute.

2 The naming of this option was perhaps unfortunate as it is easily confused with live migration, the process of moving a
resource from one node to another without stopping it. Xen virtual guests are the most common example of resources that can
be migrated in this manner.

Chapter 9. Advanced Configuration

74

Important

A successful operation does not clear past failures. If a recurring monitor operation fails once,
succeeds many times, then fails again days later, its fail count is 2. Fail counts are cleared only
by manual intervention or falure timeout.

For example, a setting of migration-threshold=2 and failure-timeout=60s would cause the
resource to move to a new node after 2 failures, and allow it to move back (depending on stickiness
and constraint scores) after one minute.

Note

failure-timeout is measured since the most recent failure. That is, older failures do not
individually time out and lower the fail count. Instead, all failures are timed out simultaneously
(and the fail count is reset to 0) if there is no new failure for the timeout period.

There are two exceptions to the migration threshold concept: when a resource either fails to start or
fails to stop.

If the cluster property start-failure-is-fatal is set to true (which is the default), start failures
cause the fail count to be set to INFINITY and thus always cause the resource to move immediately.

Stop failures are slightly different and crucial. If a resource fails to stop and STONITH is enabled, then
the cluster will fence the node in order to be able to start the resource elsewhere. If STONITH is not
enabled, then the cluster has no way to continue and will not try to start the resource elsewhere, but
will try to stop it again after the failure timeout.

Important

Please read Section 8.7, “Ensuring Time-Based Rules Take Effect” to understand how timeouts
work before configuring a failure-timeout.

9.4. Moving Resources

9.4.1. Moving Resources Manually
There are primarily two occasions when you would want to move a resource from its current location:
when the whole node is under maintenance, and when a single resource needs to be moved.

Moving Resources Manually

75

9.4.1.1. Standby Mode
Since everything eventually comes down to a score, you could create constraints for every resource
to prevent them from running on one node. While pacemaker configuration can seem convoluted at
times, not even we would require this of administrators.

Instead, one can set a special node attribute which tells the cluster "don’t let anything run here". There
is even a helpful tool to help query and set it, called crm_standby. To check the standby status of the
current machine, run:

crm_standby -G

A value of on indicates that the node is not able to host any resources, while a value of off says that
it can.

You can also check the status of other nodes in the cluster by specifying the --node option:

crm_standby -G --node sles-2

To change the current node’s standby status, use -v instead of -G:

crm_standby -v on

Again, you can change another host’s value by supplying a hostname with --node.

9.4.1.2. Moving One Resource
When only one resource is required to move, we could do this by creating location constraints.
However, once again we provide a user-friendly shortcut as part of the crm_resource command,
which creates and modifies the extra constraints for you. If Email were running on sles-1 and you
wanted it moved to a specific location, the command would look something like:

crm_resource -M -r Email -H sles-2

Behind the scenes, the tool will create the following location constraint:

<rsc_location rsc="Email" node="sles-2" score="INFINITY"/>

It is important to note that subsequent invocations of crm_resource -M are not cumulative. So, if
you ran these commands

crm_resource -M -r Email -H sles-2
crm_resource -M -r Email -H sles-3

then it is as if you had never performed the first command.

To allow the resource to move back again, use:

crm_resource -U -r Email

Note the use of the word allow. The resource can move back to its original location but, depending
on resource-stickiness, it might stay where it is. To be absolutely certain that it moves back to
sles-1, move it there before issuing the call to crm_resource -U:

crm_resource -M -r Email -H sles-1

Chapter 9. Advanced Configuration

76

crm_resource -U -r Email

Alternatively, if you only care that the resource should be moved from its current location, try:

crm_resource -B -r Email

Which will instead create a negative constraint, like

<rsc_location rsc="Email" node="sles-1" score="-INFINITY"/>

This will achieve the desired effect, but will also have long-term consequences. As the tool will warn
you, the creation of a -INFINITY constraint will prevent the resource from running on that node until
crm_resource -U is used. This includes the situation where every other cluster node is no longer
available!

In some cases, such as when resource-stickiness is set to INFINITY, it is possible that you
will end up with the problem described in Section 6.2.4, “What if Two Nodes Have the Same Score”.
The tool can detect some of these cases and deals with them by creating both positive and negative
constraints. E.g.

Email prefers sles-1 with a score of -INFINITY

Email prefers sles-2 with a score of INFINITY

which has the same long-term consequences as discussed earlier.

9.4.2. Moving Resources Due to Connectivity Changes
You can configure the cluster to move resources when external connectivity is lost in two steps.

9.4.2.1. Tell Pacemaker to Monitor Connectivity
First, add an ocf:pacemaker:ping resource to the cluster. The ping resource uses the system
utility of the same name to a test whether list of machines (specified by DNS hostname or IPv4/IPv6
address) are reachable and uses the results to maintain a node attribute called pingd by default. 3

Note

Older versions of Heartbeat required users to add ping nodes to ha.cf, but this is no longer
required.

Older versions of Pacemaker used a different agent ocf:pacemaker:pingd which is now
deprecated in favor of ping. If your version of Pacemaker does not contain the ping resource
agent, download the latest version from https://github.com/ClusterLabs/pacemaker/tree/master/
extra/resources/ping

Normally, the ping resource should run on all cluster nodes, which means that you’ll need to create
a clone. A template for this can be found below along with a description of the most interesting
parameters.

3 The attribute name is customizable, in order to allow multiple ping groups to be defined.

https://github.com/ClusterLabs/pacemaker/tree/master/extra/resources/ping
https://github.com/ClusterLabs/pacemaker/tree/master/extra/resources/ping

Moving Resources Due to Connectivity Changes

77

Table 9.3. Common Options for a ping Resource

Field Description

dampen The time to wait (dampening) for further changes to occur. Use this to
prevent a resource from bouncing around the cluster when cluster nodes
notice the loss of connectivity at slightly different times.

multiplier The number of connected ping nodes gets multiplied by this value to get a
score. Useful when there are multiple ping nodes configured.

host_list The machines to contact in order to determine the current connectivity
status. Allowed values include resolvable DNS host names, IPv4 and IPv6
addresses.

Example 9.2. An example ping cluster resource that checks node connectivity once every minute

<clone id="Connected">
 <primitive id="ping" provider="pacemaker" class="ocf" type="ping">
 <instance_attributes id="ping-attrs">
 <nvpair id="pingd-dampen" name="dampen" value="5s"/>
 <nvpair id="pingd-multiplier" name="multiplier" value="1000"/>
 <nvpair id="pingd-hosts" name="host_list" value="my.gateway.com www.bigcorp.com"/>
 </instance_attributes>
 <operations>
 <op id="ping-monitor-60s" interval="60s" name="monitor"/>
 </operations>
 </primitive>
</clone>

Important

You’re only half done. The next section deals with telling Pacemaker how to deal with the
connectivity status that ocf:pacemaker:ping is recording.

9.4.2.2. Tell Pacemaker How to Interpret the Connectivity Data

Important

Before attempting the following, make sure you understand Chapter 8, Rules.

There are a number of ways to use the connectivity data.

The most common setup is for people to have a single ping target (e.g. the service network’s default
gateway), to prevent the cluster from running a resource on any unconnected node.

Example 9.3. Don’t run a resource on unconnected nodes

<rsc_location id="WebServer-no-connectivity" rsc="Webserver">
 <rule id="ping-exclude-rule" score="-INFINITY" >
 <expression id="ping-exclude" attribute="pingd" operation="not_defined"/>

Chapter 9. Advanced Configuration

78

 </rule>
</rsc_location>

A more complex setup is to have a number of ping targets configured. You can require the cluster to
only run resources on nodes that can connect to all (or a minimum subset) of them.

Example 9.4. Run only on nodes connected to three or more ping targets.

<primitive id="ping" provider="pacemaker" class="ocf" type="ping">
... <!-- omitting some configuration to highlight important parts -->
 <nvpair id="pingd-multiplier" name="multiplier" value="1000"/>
...
</primitive>
...
<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score="-INFINITY" >
 <expression id="ping-prefer" attribute="pingd" operation="lt" value="3000"/>
 </rule>
</rsc_location>

Alternatively, you can tell the cluster only to prefer nodes with the best connectivity. Just be sure to set
multiplier to a value higher than that of resource-stickiness (and don’t set either of them to
INFINITY).

Example 9.5. Prefer the node with the most connected ping nodes

<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
</rsc_location>

It is perhaps easier to think of this in terms of the simple constraints that the cluster translates it into.
For example, if sles-1 is connected to all five ping nodes but sles-2 is only connected to two, then it
would be as if you instead had the following constraints in your configuration:

Example 9.6. How the cluster translates the above location constraint

<rsc_location id="ping-1" rsc="Webserver" node="sles-1" score="5000"/>
<rsc_location id="ping-2" rsc="Webserver" node="sles-2" score="2000"/>

The advantage is that you don’t have to manually update any constraints whenever your network
connectivity changes.

You can also combine the concepts above into something even more complex. The example
below shows how you can prefer the node with the most connected ping nodes provided they have
connectivity to at least three (again assuming that multiplier is set to 1000).

Example 9.7. A more complex example of choosing a location based on connectivity

<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-exclude-rule" score="-INFINITY" >
 <expression id="ping-exclude" attribute="pingd" operation="lt" value="3000"/>

Migrating Resources

79

 </rule>
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
</rsc_location>

9.4.3. Migrating Resources
Normally, when the cluster needs to move a resource, it fully restarts the resource (i.e. stops the
resource on the current node and starts it on the new node).

However, some types of resources, such as Xen virtual guests, are able to move to another location
without loss of state (often referred to as live migration or hot migration). In pacemaker, this is called
resource migration. Pacemaker can be configured to migrate a resource when moving it, rather than
restarting it.

Not all resources are able to migrate; see the Migration Checklist below, and those that can, won’t do
so in all situations. Conceptually, there are two requirements from which the other prerequisites follow:

• The resource must be active and healthy at the old location; and

• everything required for the resource to run must be available on both the old and new locations.

The cluster is able to accommodate both push and pull migration models by requiring the resource
agent to support two special actions: migrate_to (performed on the current location) and
migrate_from (performed on the destination).

In push migration, the process on the current location transfers the resource to the new location where
is it later activated. In this scenario, most of the work would be done in the migrate_to action and, if
anything, the activation would occur during migrate_from.

Conversely for pull, the migrate_to action is practically empty and migrate_from does most of the
work, extracting the relevant resource state from the old location and activating it.

There is no wrong or right way for a resource agent to implement migration, as long as it works.

Migration Checklist
• The resource may not be a clone.

• The resource must use an OCF style agent.

• The resource must not be in a failed or degraded state.

• The resource agent must support migrate_to and migrate_from actions, and advertise them in
its metadata.

• The resource must have the allow-migrate meta-attribute set to true (which is not the default).

If an otherwise migratable resource depends on another resource via an ordering constraint, there are
special situations in which it will be restarted rather than migrated.

For example, if the resource depends on a clone, and at the time the resource needs to be moved,
the clone has instances that are stopping and instances that are starting, then the resource will be
restarted. The Policy Engine is not yet able to model this situation correctly and so takes the safer (if
less optimal) path.

In pacemaker 1.1.11 and earlier, a migratable resource will be restarted when moving if it directly or
indirectly depends on any primitive or group resources.

Chapter 9. Advanced Configuration

80

Even in newer versions, if a migratable resource depends on a non-migratable resource, and both
need to be moved, the migratable resource will be restarted.

9.5. Tracking Node Health
A node may be functioning adequately as far as cluster membership is concerned, and yet be
"unhealthy" in some respect that makes it an undesirable location for resources. For example, a disk
drive may be reporting SMART errors, or the CPU may be highly loaded.

Pacemaker offers a way to automatically move resources off unhealthy nodes.

9.5.1. Node Health Attributes
Pacemaker will treat any node attribute whose name starts with #health as an indicator of node
health. Node health attributes may have one of the following values:

Table 9.4. Allowed Values for Node Health Attributes

Value Intended significance

red This indicator is unhealthy

yellow This indicator is becoming unhealthy

green This indicator is healthy

integer A numeric score to apply to all resources on this node (0 or positive is
healthy, negative is unhealthy)

9.5.2. Node Health Strategy
Pacemaker assigns a node health score to each node, as the sum of the values of all its node health
attributes. This score will be used as a location constraint applied to this node for all resources.

The node-health-strategy cluster option controls how Pacemaker responds to changes in node
health attributes, and how it translates red, yellow, and green to scores.

Allowed values are:

Table 9.5. Node Health Strategies

Value Effect

none Do not track node health attributes at all.

migrate-on-red Assign the value of -INFINITY to red, and 0 to yellow and green.
This will cause all resources to move off the node if any attribute is
red.

only-green Assign the value of -INFINITY to red and yellow, and 0 to green.
This will cause all resources to move off the node if any attribute is
red or yellow.

progressive Assign the value of the node-health-red cluster option to red, the
value of node-health-yellow to yellow, and the value of node-
health-green to green. Each node is additionally assigned a score
of node-health-base (this allows resources to start even if some
attributes are yellow). This strategy gives the administrator finer
control over how important each value is.

custom Track node health attributes using the same values as progressive
for red, yellow, and green, but do not take them into account. The

Measuring Node Health

81

Value Effect
administrator is expected to implement a policy by defining rules (see
Chapter 8, Rules) referencing node health attributes.

9.5.3. Measuring Node Health
Since Pacemaker calculates node health based on node attributes, any method that sets node
attributes may be used to measure node health. The most common ways are resource agents or
separate daemons.

Pacemaker provides examples that can be used directly or as a basis for custom code. The
ocf:pacemaker:HealthCPU and ocf:pacemaker:HealthSMART resource agents set node
health attributes based on CPU and disk parameters. The ipmiservicelogd daemon sets node
health attributes based on IPMI values (the ocf:pacemaker:SystemHealth resource agent can be
used to manage the daemon as a cluster resource).

9.6. Reloading Services After a Definition Change
The cluster automatically detects changes to the definition of services it manages. The normal
response is to stop the service (using the old definition) and start it again (with the new definition).
This works well, but some services are smarter and can be told to use a new set of options without
restarting.

To take advantage of this capability, the resource agent must:

1. Accept the reload operation and perform any required actions. The actions here depend
completely on your application!

Example 9.8. The DRBD agent’s logic for supporting reload

case $1 in
 start)
 drbd_start
 ;;
 stop)
 drbd_stop
 ;;
 reload)
 drbd_reload
 ;;
 monitor)
 drbd_monitor
 ;;
 *)
 drbd_usage
 exit $OCF_ERR_UNIMPLEMENTED
 ;;
esac
exit $?

2. Advertise the reload operation in the actions section of its metadata

Example 9.9. The DRBD Agent Advertising Support for the reload Operation

<?xml version="1.0"?>
 <!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
 <resource-agent name="drbd">
 <version>1.1</version>

Chapter 9. Advanced Configuration

82

 <longdesc>
 Master/Slave OCF Resource Agent for DRBD
 </longdesc>

 ...

 <actions>
 <action name="start" timeout="240" />
 <action name="reload" timeout="240" />
 <action name="promote" timeout="90" />
 <action name="demote" timeout="90" />
 <action name="notify" timeout="90" />
 <action name="stop" timeout="100" />
 <action name="meta-data" timeout="5" />
 <action name="validate-all" timeout="30" />
 </actions>
 </resource-agent>

3. Advertise one or more parameters that can take effect using reload.

Any parameter with the unique set to 0 is eligible to be used in this way.

Example 9.10. Parameter that can be changed using reload

<parameter name="drbdconf" unique="0">
 <longdesc>Full path to the drbd.conf file.</longdesc>
 <shortdesc>Path to drbd.conf</shortdesc>
 <content type="string" default="${OCF_RESKEY_drbdconf_default}"/>
</parameter>

Once these requirements are satisfied, the cluster will automatically know to reload the resource
(instead of restarting) when a non-unique field changes.

Note

Metadata will not be re-read unless the resource needs to be started. This may mean that the
resource will be restarted the first time, even though you changed a parameter with unique=0.

Note

If both a unique and non-unique field are changed simultaneously, the resource will still be
restarted.

Chapter 10.

83

Advanced Resource Types

Table of Contents
10.1. Groups - A Syntactic Shortcut ... 83

10.1.1. Group Properties .. 84
10.1.2. Group Options .. 84
10.1.3. Group Instance Attributes ... 85
10.1.4. Group Contents .. 85
10.1.5. Group Constraints .. 85
10.1.6. Group Stickiness .. 85

10.2. Clones - Resources That Get Active on Multiple Hosts .. 85
10.2.1. Clone Properties ... 86
10.2.2. Clone Options .. 86
10.2.3. Clone Instance Attributes .. 86
10.2.4. Clone Contents .. 86
10.2.5. Clone Constraints ... 87
10.2.6. Clone Stickiness ... 87
10.2.7. Clone Resource Agent Requirements .. 88

10.3. Multi-state - Resources That Have Multiple Modes .. 90
10.3.1. Multi-state Properties .. 90
10.3.2. Multi-state Options .. 90
10.3.3. Multi-state Instance Attributes ... 90
10.3.4. Multi-state Contents .. 90
10.3.5. Monitoring Multi-State Resources .. 91
10.3.6. Multi-state Constraints .. 91
10.3.7. Multi-state Stickiness .. 93
10.3.8. Which Resource Instance is Promoted .. 93
10.3.9. Requirements for Multi-state Resource Agents ... 94

10.4. Bundles - Isolated Environments .. 98
10.4.1. Bundle Properties ... 99
10.4.2. Docker Properties ... 99
10.4.3. rkt Properties .. 100
10.4.4. Bundle Network Properties .. 100
10.4.5. Bundle Storage Properties .. 102
10.4.6. Bundle Primitive ... 103
10.4.7. Bundle Node Attributes ... 103
10.4.8. Bundle Meta-Attributes .. 104
10.4.9. Limitations of Bundles ... 104

10.1. Groups - A Syntactic Shortcut

One of the most common elements of a cluster is a set of resources that need to be located together,
start sequentially, and stop in the reverse order. To simplify this configuration, we support the concept
of groups.

Example 10.1. A group of two primitive resources

<group id="shortcut">

Chapter 10. Advanced Resource Types

84

 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
 </primitive>
 <primitive id="Email" class="lsb" type="exim"/>
</group>

Although the example above contains only two resources, there is no limit to the number of resources
a group can contain. The example is also sufficient to explain the fundamental properties of a group:

• Resources are started in the order they appear in (Public-IP first, then Email)

• Resources are stopped in the reverse order to which they appear in (Email first, then Public-IP)

If a resource in the group can’t run anywhere, then nothing after that is allowed to run, too.

• If Public-IP can’t run anywhere, neither can Email;

• but if Email can’t run anywhere, this does not affect Public-IP in any way

The group above is logically equivalent to writing:

Example 10.2. How the cluster sees a group resource

<configuration>
 <resources>
 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
 </instance_attributes>
 </primitive>
 <primitive id="Email" class="lsb" type="exim"/>
 </resources>
 <constraints>
 <rsc_colocation id="xxx" rsc="Email" with-rsc="Public-IP" score="INFINITY"/>
 <rsc_order id="yyy" first="Public-IP" then="Email"/>
 </constraints>
</configuration>

Obviously as the group grows bigger, the reduced configuration effort can become significant.

Another (typical) example of a group is a DRBD volume, the filesystem mount, an IP address, and an
application that uses them.

10.1.1. Group Properties

Table 10.1. Properties of a Group Resource

Field Description

id A unique name for the group

10.1.2. Group Options
Groups inherit the priority, target-role, and is-managed properties from primitive resources.
See Section 5.4, “Resource Options” for information about those properties.

Group Instance Attributes

85

10.1.3. Group Instance Attributes
Groups have no instance attributes. However, any that are set for the group object will be inherited by
the group’s children.

10.1.4. Group Contents
Groups may only contain a collection of cluster resources (see Section 5.3, “Resource Properties”). To
refer to a child of a group resource, just use the child’s id instead of the group’s.

10.1.5. Group Constraints
Although it is possible to reference a group’s children in constraints, it is usually preferable to
reference the group itself.

Example 10.3. Some constraints involving groups

<constraints>
 <rsc_location id="group-prefers-node1" rsc="shortcut" node="node1" score="500"/>
 <rsc_colocation id="webserver-with-group" rsc="Webserver" with-rsc="shortcut"/>
 <rsc_order id="start-group-then-webserver" first="Webserver" then="shortcut"/>
</constraints>

10.1.6. Group Stickiness

Stickiness, the measure of how much a resource wants to stay where it is, is additive in groups. Every
active resource of the group will contribute its stickiness value to the group’s total. So if the default
resource-stickiness is 100, and a group has seven members, five of which are active, then the
group as a whole will prefer its current location with a score of 500.

10.2. Clones - Resources That Get Active on Multiple Hosts

Clones were initially conceived as a convenient way to start multiple instances of an IP address
resource and have them distributed throughout the cluster for load balancing. They have turned out to
quite useful for a number of purposes including integrating with the Distributed Lock Manager (used by
many cluster filesystems), the fencing subsystem, and OCFS2.

You can clone any resource, provided the resource agent supports it.

Three types of cloned resources exist:

• Anonymous

• Globally unique

• Stateful

Anonymous clones are the simplest. These behave completely identically everywhere they are
running. Because of this, there can be only one copy of an anonymous clone active per machine.

Globally unique clones are distinct entities. A copy of the clone running on one machine is not
equivalent to another instance on another node, nor would any two copies on the same node be
equivalent.

Chapter 10. Advanced Resource Types

86

Stateful clones are covered later in Section 10.3, “Multi-state - Resources That Have Multiple Modes”.

Example 10.4. A clone of an LSB resource

<clone id="apache-clone">
 <meta_attributes id="apache-clone-meta">
 <nvpair id="apache-unique" name="globally-unique" value="false"/>
 </meta_attributes>
 <primitive id="apache" class="lsb" type="apache"/>
</clone>

10.2.1. Clone Properties
Table 10.2. Properties of a Clone Resource

Field Description

id A unique name for the clone

10.2.2. Clone Options
Options inherited from primitive resources: priority, target-role, is-managed

Table 10.3. Clone-specific configuration options

Field Default Description

clone-max number of nodes
in cluster

How many copies of the resource to start

clone-node-
max

1 How many copies of the resource can be started on a
single node

clone-min 1 Require at least this number of clone instances to be
runnable before allowing resources depending on the
clone to be runnable (since 1.1.14)

notify true When stopping or starting a copy of the clone, tell all the
other copies beforehand and again when the action was
successful. Allowed values: false, true

globally-
unique

false Does each copy of the clone perform a different
function? Allowed values: false, true

ordered false Should the copies be started in series (instead of in
parallel)? Allowed values: false, true

interleave false If this clone depends on another clone via an ordering
constraint, is it allowed to start after the local instance of
the other clone starts, rather than wait for all instances
of the other clone to start? Allowed values: false,
true

10.2.3. Clone Instance Attributes
Clones have no instance attributes; however, any that are set here will be inherited by the clone’s
children.

10.2.4. Clone Contents
Clones must contain exactly one primitive or group resource.

Clone Constraints

87

Warning

You should never reference the name of a clone’s child. If you think you need to do this, you
probably need to re-evaluate your design.

10.2.5. Clone Constraints
In most cases, a clone will have a single copy on each active cluster node. If this is not the case, you
can indicate which nodes the cluster should preferentially assign copies to with resource location
constraints. These constraints are written no differently from those for primitive resources except that
the clone’s id is used.

Example 10.5. Some constraints involving clones

<constraints>
 <rsc_location id="clone-prefers-node1" rsc="apache-clone" node="node1" score="500"/>
 <rsc_colocation id="stats-with-clone" rsc="apache-stats" with="apache-clone"/>
 <rsc_order id="start-clone-then-stats" first="apache-clone" then="apache-stats"/>
</constraints>

Ordering constraints behave slightly differently for clones. In the example above, apache-stats will
wait until all copies of apache-clone that need to be started have done so before being started itself.
Only if no copies can be started will apache-stats be prevented from being active. Additionally, the
clone will wait for apache-stats to be stopped before stopping itself.

Colocation of a primitive or group resource with a clone means that the resource can run on any
machine with an active copy of the clone. The cluster will choose a copy based on where the clone is
running and the resource’s own location preferences.

Colocation between clones is also possible. If one clone A is colocated with another clone B, the
set of allowed locations for A is limited to nodes on which B is (or will be) active. Placement is then
performed normally.

10.2.6. Clone Stickiness

To achieve a stable allocation pattern, clones are slightly sticky by default. If no value for resource-
stickiness is provided, the clone will use a value of 1. Being a small value, it causes minimal
disturbance to the score calculations of other resources but is enough to prevent Pacemaker from
needlessly moving copies around the cluster.

Chapter 10. Advanced Resource Types

88

Note

For globally unique clones, this may result in multiple instances of the clone staying on a
single node, even after another eligible node becomes active (for example, after being put into
standby mode then made active again). If you do not want this behavior, specify a resource-
stickiness of 0 for the clone temporarily and let the cluster adjust, then set it back to 1 if you
want the default behavior to apply again.

10.2.7. Clone Resource Agent Requirements
Any resource can be used as an anonymous clone, as it requires no additional support from the
resource agent. Whether it makes sense to do so depends on your resource and its resource agent.

Globally unique clones do require some additional support in the resource agent. In particular, it must
only respond with ${OCF_SUCCESS} if the node has that exact instance active. All other probes for
instances of the clone should result in ${OCF_NOT_RUNNING} (or one of the other OCF error codes if
they are failed).

Individual instances of a clone are identified by appending a colon and a numerical offset, e.g.
apache:2.

Resource agents can find out how many copies there are by examining the
OCF_RESKEY_CRM_meta_clone_max environment variable and which copy it is by examining
OCF_RESKEY_CRM_meta_clone.

The resource agent must not make any assumptions (based on OCF_RESKEY_CRM_meta_clone)
about which numerical instances are active. In particular, the list of active copies will not always be an
unbroken sequence, nor always start at 0.

10.2.7.1. Clone Notifications
Supporting notifications requires the notify action to be implemented. If supported, the notify action
will be passed a number of extra variables which, when combined with additional context, can be used
to calculate the current state of the cluster and what is about to happen to it.

Table 10.4. Environment variables supplied with Clone notify actions

Variable Description

OCF_RESKEY_CRM_meta_notify_type Allowed values: pre, post

OCF_RESKEY_CRM_meta_notify_operation Allowed values: start, stop

OCF_RESKEY_CRM_meta_notify_start_resource Resources to be started

OCF_RESKEY_CRM_meta_notify_stop_resource Resources to be stopped

OCF_RESKEY_CRM_meta_notify_active_resource Resources that are running

OCF_RESKEY_CRM_meta_notify_inactive_resource Resources that are not running

OCF_RESKEY_CRM_meta_notify_start_uname Nodes on which resources will be
started

OCF_RESKEY_CRM_meta_notify_stop_uname Nodes on which resources will be
stopped

OCF_RESKEY_CRM_meta_notify_active_uname Nodes on which resources are
running

Clone Resource Agent Requirements

89

The variables come in pairs, such as OCF_RESKEY_CRM_meta_notify_start_resource and
OCF_RESKEY_CRM_meta_notify_start_uname and should be treated as an array of whitespace-
separated elements.

OCF_RESKEY_CRM_meta_notify_inactive_resource is an exception as the matching uname
variable does not exist since inactive resources are not running on any node.

Thus in order to indicate that clone:0 will be started on sles-1, clone:2 will be started on
sles-3, and clone:3 will be started on sles-2, the cluster would set

Example 10.6. Notification variables

OCF_RESKEY_CRM_meta_notify_start_resource="clone:0 clone:2 clone:3"
OCF_RESKEY_CRM_meta_notify_start_uname="sles-1 sles-3 sles-2"

10.2.7.2. Proper Interpretation of Notification Environment Variables

Pre-notification (stop):
• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (stop) / Pre-notification (start):
• Active resources

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Inactive resources

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (start):
• Active resources:

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Inactive resources:

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

Chapter 10. Advanced Resource Types

90

• minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

10.3. Multi-state - Resources That Have Multiple Modes

Multi-state resources are a specialization of clone resources; please ensure you understand
Section 10.2, “Clones - Resources That Get Active on Multiple Hosts” before continuing!

Multi-state resources allow the instances to be in one of two operating modes (called roles). The roles
are called master and slave, but can mean whatever you wish them to mean. The only limitation is that
when an instance is started, it must come up in the slave role.

10.3.1. Multi-state Properties

Table 10.5. Properties of a Multi-State Resource

Field Description

id Your name for the multi-state resource

10.3.2. Multi-state Options
Options inherited from primitive resources: priority, target-role, is-managed

Options inherited from clone resources: clone-max, clone-node-max, notify, globally-
unique, ordered, interleave

Table 10.6. Multi-state-specific resource configuration options

Field Default Description

master-max 1 How many copies of the resource can be promoted to
the master role

master-node-
max

1 How many copies of the resource can be promoted to
the master role on a single node

10.3.3. Multi-state Instance Attributes
Multi-state resources have no instance attributes; however, any that are set here will be inherited by a
master’s children.

10.3.4. Multi-state Contents
Masters must contain exactly one primitive or group resource.

Monitoring Multi-State Resources

91

Warning

You should never reference the name of a master’s child. If you think you need to do this, you
probably need to re-evaluate your design.

10.3.5. Monitoring Multi-State Resources
The usual monitor actions are insufficient to monitor a multi-state resource, because pacemaker needs
to verify not only that the resource is active, but also that its actual role matches its intended one.

Define two monitoring actions: the usual one will cover the slave role, and an additional one with
role="master" will cover the master role.

Example 10.7. Monitoring both states of a multi-state resource

<master id="myMasterRsc">
 <primitive id="myRsc" class="ocf" type="myApp" provider="myCorp">
 <operations>
 <op id="public-ip-slave-check" name="monitor" interval="60"/>
 <op id="public-ip-master-check" name="monitor" interval="61" role="Master"/>
 </operations>
 </primitive>
</master>

Important

It is crucial that every monitor operation has a different interval! Pacemaker currently
differentiates between operations only by resource and interval; so if (for example) a master/slave
resource had the same monitor interval for both roles, Pacemaker would ignore the role when
checking the status — which would cause unexpected return codes, and therefore unnecessary
complications.

10.3.6. Multi-state Constraints
In most cases, multi-state resources will have a single copy on each active cluster node. If this is not
the case, you can indicate which nodes the cluster should preferentially assign copies to with resource
location constraints. These constraints are written no differently from those for primitive resources
except that the master’s id is used.

When considering multi-state resources in constraints, for most purposes it is sufficient to treat
them as clones. The exception is that the first-action and/or then-action fields for ordering
constraints may be set to promote or demote to constrain the master role, and colocation constraints
may contain rsc-role and/or with-rsc-role fields.

Chapter 10. Advanced Resource Types

92

Table 10.7. Additional colocation constraint options for multi-state resources

Field Default Description

rsc-role Started An additional attribute of colocation constraints that
specifies the role that rsc must be in. Allowed values:
Started, Master, Slave.

with-rsc-
role

Started An additional attribute of colocation constraints that
specifies the role that with-rsc must be in. Allowed
values: Started, Master, Slave.

Example 10.8. Constraints involving multi-state resources

<constraints>
 <rsc_location id="db-prefers-node1" rsc="database" node="node1" score="500"/>
 <rsc_colocation id="backup-with-db-slave" rsc="backup"
 with-rsc="database" with-rsc-role="Slave"/>
 <rsc_colocation id="myapp-with-db-master" rsc="myApp"
 with-rsc="database" with-rsc-role="Master"/>
 <rsc_order id="start-db-before-backup" first="database" then="backup"/>
 <rsc_order id="promote-db-then-app" first="database" first-action="promote"
 then="myApp" then-action="start"/>
</constraints>

In the example above, myApp will wait until one of the database copies has been started and
promoted to master before being started itself on the same node. Only if no copies can be promoted
will myApp be prevented from being active. Additionally, the cluster will wait for myApp to be stopped
before demoting the database.

Colocation of a primitive or group resource with a multi-state resource means that it can run on
any machine with an active copy of the multi-state resource that has the specified role (master or
slave). In the example above, the cluster will choose a location based on where database is running
as a master, and if there are multiple master instances it will also factor in myApp's own location
preferences when deciding which location to choose.

Colocation with regular clones and other multi-state resources is also possible. In such cases, the set
of allowed locations for the rsc clone is (after role filtering) limited to nodes on which the with-rsc
multi-state resource is (or will be) in the specified role. Placement is then performed as normal.

10.3.6.1. Using Multi-state Resources in Colocation Sets

Table 10.8. Additional colocation set options relevant to multi-state resources

Field Default Description

role Started The role that all members of the set must be in. Allowed values:
Started, Master, Slave.

In the following example B's master must be located on the same node as A's master. Additionally
resources C and D must be located on the same node as A's and B's masters.

Example 10.9. Colocate C and D with A’s and B’s master instances

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="colocated-set-example-1" sequential="true" role="Master">
 <resource_ref id="A"/>
 <resource_ref id="B"/>

Multi-state Stickiness

93

 </resource_set>
 <resource_set id="colocated-set-example-2" sequential="true">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
</constraints>

10.3.6.2. Using Multi-state Resources in Ordering Sets

Table 10.9. Additional ordered set options relevant to multi-state resources

Field Default Description

action value of first-
action

An additional attribute of ordering constraint sets that
specifies the action that applies to all members of the
set. Allowed values: start, stop, promote, demote.

Example 10.10. Start C and D after first promoting A and B

<constraints>
 <rsc_order id="order-1" score="INFINITY" >
 <resource_set id="ordered-set-1" sequential="true" action="promote">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="true" action="start">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
</constraints>

In the above example, B cannot be promoted to a master role until A has been promoted. Additionally,
resources C and D must wait until A and B have been promoted before they can start.

10.3.7. Multi-state Stickiness
 As with regular clones, multi-state resources are slightly sticky by default. See Section 10.2.6, “Clone
Stickiness” for details.

10.3.8. Which Resource Instance is Promoted
During the start operation, most resource agents should call the crm_master utility. This tool
automatically detects both the resource and host and should be used to set a preference for being
promoted. Based on this, master-max, and master-node-max, the instance(s) with the highest
preference will be promoted.

An alternative is to create a location constraint that indicates which nodes are most preferred as
masters.

Example 10.11. Explicitly preferring node1 to be promoted to master

<rsc_location id="master-location" rsc="myMasterRsc">
 <rule id="master-rule" score="100" role="Master">
 <expression id="master-exp" attribute="#uname" operation="eq" value="node1"/>
 </rule>

Chapter 10. Advanced Resource Types

94

</rsc_location>

10.3.9. Requirements for Multi-state Resource Agents
Since multi-state resources are an extension of cloned resources, all the requirements for resource
agents that support clones are also requirements for resource agents that support multi-state
resources.

Additionally, multi-state resources require two extra actions, demote and promote, which are
responsible for changing the state of the resource. Like start and stop, they should return
${OCF_SUCCESS} if they completed successfully or a relevant error code if they did not.

The states can mean whatever you wish, but when the resource is started, it must come up in the
mode called slave. From there the cluster will decide which instances to promote to master.

In addition to the clone requirements for monitor actions, agents must also accurately report which
state they are in. The cluster relies on the agent to report its status (including role) accurately and
does not indicate to the agent what role it currently believes it to be in.

Table 10.10. Role implications of OCF return codes

Monitor Return Code Description

OCF_NOT_RUNNING Stopped

OCF_SUCCESS Running (Slave)

OCF_RUNNING_MASTER Running (Master)

OCF_FAILED_MASTER Failed (Master)

Other Failed (Slave)

10.3.9.1. Multi-state Notifications
Like clones, supporting notifications requires the notify action to be implemented. If supported, the
notify action will be passed a number of extra variables which, when combined with additional context,
can be used to calculate the current state of the cluster and what is about to happen to it.

Table 10.11. Environment variables supplied with multi-state notify actions 1

Variable Description

OCF_RESKEY_CRM_meta_notify_type Allowed values: pre, post

OCF_RESKEY_CRM_meta_notify_operation Allowed values: start, stop

OCF_RESKEY_CRM_meta_notify_active_resource Resources that are running

OCF_RESKEY_CRM_meta_notify_inactive_resource Resources that are not running

OCF_RESKEY_CRM_meta_notify_master_resource Resources that are running in
Master mode

OCF_RESKEY_CRM_meta_notify_slave_resource Resources that are running in
Slave mode

OCF_RESKEY_CRM_meta_notify_start_resource Resources to be started

OCF_RESKEY_CRM_meta_notify_stop_resource Resources to be stopped

OCF_RESKEY_CRM_meta_notify_promote_resource Resources to be promoted

OCF_RESKEY_CRM_meta_notify_demote_resource Resources to be demoted

OCF_RESKEY_CRM_meta_notify_start_uname Nodes on which resources will be
started

Requirements for Multi-state Resource Agents

95

Variable Description

OCF_RESKEY_CRM_meta_notify_stop_uname Nodes on which resources will be
stopped

OCF_RESKEY_CRM_meta_notify_promote_uname Nodes on which resources will be
promoted

OCF_RESKEY_CRM_meta_notify_demote_uname Nodes on which resources will be
demoted

OCF_RESKEY_CRM_meta_notify_active_uname Nodes on which resources are
running

OCF_RESKEY_CRM_meta_notify_master_uname Nodes on which resources are
running in Master mode

OCF_RESKEY_CRM_meta_notify_slave_uname Nodes on which resources are
running in Slave mode

1 Emphasized variables are specific to Master resources, and all behave in the same manner as described for Clone
resources.

10.3.9.2. Proper Interpretation of Multi-state Notification Environment
Variables

Pre-notification (demote):
• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Master resources: $OCF_RESKEY_CRM_meta_notify_master_resource

• Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (demote) / Pre-notification (stop):
• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Master resources:

• $OCF_RESKEY_CRM_meta_notify_master_resource

• minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

Chapter 10. Advanced Resource Types

96

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

Post-notification (stop) / Pre-notification (start)
• Active resources:

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Master resources:

• $OCF_RESKEY_CRM_meta_notify_master_resource

• minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources:

• $OCF_RESKEY_CRM_meta_notify_slave_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Inactive resources:

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (start) / Pre-notification (promote)
• Active resources:

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Master resources:

• $OCF_RESKEY_CRM_meta_notify_master_resource

• minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources:

• $OCF_RESKEY_CRM_meta_notify_slave_resource

Requirements for Multi-state Resource Agents

97

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Inactive resources:

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (promote)
• Active resources:

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Master resources:

• $OCF_RESKEY_CRM_meta_notify_master_resource

• minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• plus $OCF_RESKEY_CRM_meta_notify_promote_resource

• Slave resources:

• $OCF_RESKEY_CRM_meta_notify_slave_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• minus $OCF_RESKEY_CRM_meta_notify_promote_resource

• Inactive resources:

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

Chapter 10. Advanced Resource Types

98

• minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

10.4. Bundles - Isolated Environments

Pacemaker supports a special syntax for launching a container2 with any infrastructure it requires: the
bundle.

Pacemaker bundles support Docker3 (since version 1.1.17) and rkt4 (since version 1.1.18) container
technologies. 4

Example 10.12. A bundle for a containerized web server

<bundle id="httpd-bundle">
 <docker image="pcmk:http" replicas="3"/>
 <network ip-range-start="192.168.122.131"
 host-netmask="24"
 host-interface="eth0">
 <port-mapping id="httpd-port" port="80"/>
 </network>
 <storage>
 <storage-mapping id="httpd-syslog"
 source-dir="/dev/log"
 target-dir="/dev/log"
 options="rw"/>
 <storage-mapping id="httpd-root"
 source-dir="/srv/html"
 target-dir="/var/www/html"
 options="rw"/>
 <storage-mapping id="httpd-logs"
 source-dir-root="/var/log/pacemaker/bundles"
 target-dir="/etc/httpd/logs"
 options="rw"/>
 </storage>
 <primitive class="ocf" id="httpd" provider="heartbeat" type="apache"/>
</bundle>

2 https://en.wikipedia.org/wiki/Operating-system-level_virtualization
3 https://www.docker.com/
4 https://coreos.com/rkt/
4 Docker is a trademark of Docker, Inc. No endorsement by or association with Docker, Inc. is implied.

https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://www.docker.com/
https://coreos.com/rkt/
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://www.docker.com/
https://coreos.com/rkt/

Bundle Properties

99

10.4.1. Bundle Properties

Table 10.12. Properties of a Bundle

Field Description

id A unique name for the bundle (required)

description Arbitrary text (not used by Pacemaker)

A bundle must contain exactly one <docker> or <rkt> element.

10.4.2. Docker Properties
Before configuring a Docker bundle in Pacemaker, the user must install Docker and supply a fully
configured Docker image on every node allowed to run the bundle.

Pacemaker will create an implicit ocf:heartbeat:docker resource to manage a bundle’s Docker
container. The user must ensure that resource agent is installed on every node allowed to run the
bundle.

Table 10.13. Properties of a Bundle’s Docker Element

Field Default Description

image Docker image tag (required)

replicas Value of masters if that is
positive, else 1

A positive integer specifying the
number of container instances to
launch

replicas-per-
host

1 A positive integer specifying the
number of container instances allowed
to run on a single node

masters 0 A non-negative integer that, if positive,
indicates that the containerized service
should be treated as a multistate
service, with this many replicas
allowed to run the service in the
master role

network If specified, this will be passed to
docker run as the network setting6

for the Docker container.

run-command /usr/sbin/
pacemaker_remoted
if bundle contains a
primitive, otherwise none

This command will be run inside
the container when launching it
("PID 1"). If the bundle contains a
primitive, this command must start
pacemaker_remoted (but could, for
example, be a script that does other
stuff, too).

options Extra command-line options to pass to
docker run

6 https://docs.docker.com/engine/reference/run/#network-settings

https://docs.docker.com/engine/reference/run/#network-settings
https://docs.docker.com/engine/reference/run/#network-settings

Chapter 10. Advanced Resource Types

100

10.4.3. rkt Properties
Before configuring a rkt bundle in Pacemaker, the user must install rkt and supply a fully configured
container image on every node allowed to run the bundle.

Pacemaker will create an implicit ocf:heartbeat:rkt resource to manage a bundle’s rkt container.
The user must ensure that resource agent is installed on every node allowed to run the bundle.

Table 10.14. Properties of a Bundle’s rkt Element

Field Default Description

image Container image tag (required)

replicas Value of masters if that is
positive, else 1

A positive integer specifying the
number of container instances to
launch

replicas-per-
host

1 A positive integer specifying the
number of container instances allowed
to run on a single node

masters 0 A non-negative integer that, if positive,
indicates that the containerized service
should be treated as a multistate
service, with this many replicas
allowed to run the service in the
master role

network If specified, this will be passed to rkt
run as the network setting for the rkt
container.

run-command /usr/sbin/
pacemaker_remoted
if bundle contains a
primitive, otherwise none

This command will be run inside
the container when launching it
("PID 1"). If the bundle contains a
primitive, this command must start
pacemaker_remoted (but could, for
example, be a script that does other
stuff, too).

options Extra command-line options to pass to
rkt run

10.4.4. Bundle Network Properties
A bundle may optionally contain one <network> element.

Table 10.15. Properties of a Bundle’s Network Element

Field Default Description

ip-range-start If specified, Pacemaker will create an implicit
ocf:heartbeat:IPaddr2 resource for each
container instance, starting with this IP address,
using up to replicas sequential addresses. These
addresses can be used from the host’s network
to reach the service inside the container, though it
is not visible within the container itself. Only IPv4
addresses are currently supported.

Bundle Network Properties

101

Field Default Description

host-netmask 32 If ip-range-start is specified, the IP addresses
are created with this CIDR netmask (as a number of
bits).

host-interface If ip-range-start is specified, the IP addresses
are created on this host interface (by default, it will be
determined from the IP address).

control-port 3121 If the bundle contains a primitive, the cluster will
use this integer TCP port for communication with
Pacemaker Remote inside the container. Changing
this is useful when the container is unable to listen
on the default port, for example, when the container
uses the host’s network rather than ip-range-
start (in which case replicas-per-host must
be 1), or when the bundle may run on a Pacemaker
Remote node that is already listening on the default
port. Any PCMK_remote_port environment variable
set on the host or in the container is ignored for
bundle connections.

Note

If ip-range-start is used, Pacemaker will automatically ensure that /etc/hosts inside
the containers has entries for each replica and its assigned IP. Replicas are named by the
bundle id plus a dash and an integer counter starting with zero. For example, if a bundle named
httpd-bundle has replicas=2, its containers will be named httpd-bundle-0 and httpd-
bundle-1.

Additionally, a <network> element may optionally contain one or more <port-mapping> elements.

Table 10.16. Properties of a Bundle’s Port-Mapping Element

Field Default Description

id A unique name for the port mapping (required)

port If this is specified, connections to this TCP port
number on the host network (on the container’s
assigned IP address, if ip-range-start is
specified) will be forwarded to the container network.
Exactly one of port or range must be specified in a
port-mapping.

internal-port value of
port

If port and this are specified, connections to port
on the host’s network will be forwarded to this port on
the container network.

range If this is specified, connections to these TCP port
numbers (expressed as first_port-last_port) on
the host network (on the container’s assigned IP
address, if ip-range-start is specified) will be
forwarded to the same ports in the container network.

Chapter 10. Advanced Resource Types

102

Field Default Description
Exactly one of port or range must be specified in a
port-mapping.

Note

If the bundle contains a primitive, Pacemaker will automatically map the control-port, so it
is not necessary to specify that port in a port-mapping.

10.4.5. Bundle Storage Properties
A bundle may optionally contain one <storage> element. A <storage> element has no properties
of its own, but may contain one or more <storage-mapping> elements.

Table 10.17. Properties of a Bundle’s Storage-Mapping Element

Field Default Description

id A unique name for the storage mapping (required)

source-dir The absolute path on the host’s filesystem that will be
mapped into the container. Exactly one of source-
dir and source-dir-root must be specified in a
storage-mapping.

source-dir-root The start of a path on the host’s filesystem that
will be mapped into the container, using a different
subdirectory on the host for each container instance.
The subdirectory will be named the same as the
bundle host name, as described in the note for
ip-range-start. Exactly one of source-dir
and source-dir-root must be specified in a
storage-mapping.

target-dir The path name within the container where the host
storage will be mapped (required)

options File system mount options to use when mapping the
storage

Note

Pacemaker does not define the behavior if the source directory does not already exist on the
host. However, it is expected that the container technology and/or its resource agent will create
the source directory in that case.

Bundle Primitive

103

Note

If the bundle contains a primitive, Pacemaker will automatically map the equivalent of
source-dir=/etc/pacemaker/authkey target-dir=/etc/pacemaker/authkey and
source-dir-root=/var/log/pacemaker/bundles target-dir=/var/log into the
container, so it is not necessary to specify those paths in a storage-mapping.

Important

The PCMK_authkey_location environment variable must not be set to anything other than the
default of /etc/pacemaker/authkey on any node in the cluster.

10.4.6. Bundle Primitive
A bundle may optionally contain one <primitive> resource (see Section 5.1, “What is a Cluster
Resource?”). The primitive may have operations, instance attributes and meta-attributes defined, as
usual.

If a bundle contains a primitive resource, the container image must include the Pacemaker Remote
daemon, and at least one of ip-range-start or control-port must be configured in the
bundle. Pacemaker will create an implicit ocf:pacemaker:remote resource for the connection,
launch Pacemaker Remote within the container, and monitor and manage the primitive resource via
Pacemaker Remote.

If the bundle has more than one container instance (replica), the primitive resource will function as
an implicit clone (see Section 10.2, “Clones - Resources That Get Active on Multiple Hosts”) — a
multistate clone if the bundle has masters greater than zero (see Section 10.3, “Multi-state -
Resources That Have Multiple Modes”).

Important

Containers in bundles with a primitive must have an accessible networking environment, so
that Pacemaker on the cluster nodes can contact Pacemaker Remote inside the container. For
example, the Docker option --net=none should not be used with a primitive. The default
(using a distinct network space inside the container) works in combination with ip-range-
start. If the Docker option --net=host is used (making the container share the host’s network
space), a unique control-port should be specified for each bundle. Any firewall must allow
access to the control-port.

10.4.7. Bundle Node Attributes
If the bundle has a primitive, the primitive’s resource agent may want to set node attributes such
as master scores. However, with containers, it is not apparent which node should get the attribute.

Chapter 10. Advanced Resource Types

104

If the container uses shared storage that is the same no matter which node the container is hosted on,
then it is appropriate to use the master score on the bundle node itself.

On the other hand, if the container uses storage exported from the underlying host, then it may be
more appropriate to use the master score on the underlying host.

Since this depends on the particular situation, the container-attribute-target resource meta-
attribute allows the user to specify which approach to use. If it is set to host, then user-defined node
attributes will be checked on the underlying host. If it is anything else, the local node (in this case the
bundle node) is used as usual.

This only applies to user-defined attributes; the cluster will always check the local node for cluster-
defined attributes such as #uname.

If container-attribute-target is host, the cluster will pass additional environment
variables to the primitive’s resource agent that allow it to set node attributes appropriately:
container_attribute_target (identical to the meta-attribute value) and physical_host (the
name of the underlying host).

Note

It is up to the resource agent to check for the additional variables and use them when setting
node attributes.

10.4.8. Bundle Meta-Attributes
Any meta-attribute set on a bundle will be inherited by the bundle’s primitive and any resources
implicitly created by Pacemaker for the bundle.

This includes options such as priority, target-role, and is-managed. See Section 5.4,
“Resource Options” for more information.

10.4.9. Limitations of Bundles
Restarting pacemaker while a bundle is unmanaged or the cluster is in maintenance mode may cause
the bundle to fail.

Bundles may not be cloned or included in groups. This includes the bundle’s primitive and any
resources implicitly created by Pacemaker for the bundle.

Bundles do not have instance attributes, utilization attributes, or operations, though a bundle’s
primitive may have them.

A bundle with a primitive can run on a Pacemaker Remote node only if the bundle uses a distinct
control-port.

Chapter 11.

105

Reusing Parts of the Configuration

Table of Contents
11.1. Reusing Resource Definitions .. 105

11.1.1. Configuring Resources with Templates .. 105
11.1.2. Using Templates in Constraints ... 107
11.1.3. Using Templates in Resource Sets .. 107

11.2. Reusing Rules, Options and Sets of Operations .. 108
11.3. Tagging Configuration Elements ... 109

11.3.1. Configuring Tags .. 109
11.3.2. Using Tags in Constraints and Resource Sets ... 110

Pacemaker provides multiple ways to simplify the configuration XML by reusing parts of it in multiple
places.

Besides simplifying the XML, this also allows you to manipulate multiple configuration elements with a
single reference.

11.1. Reusing Resource Definitions
If you want to create lots of resources with similar configurations, defining a resource template
simplifies the task. Once defined, it can be referenced in primitives or in certain types of constraints.

11.1.1. Configuring Resources with Templates
The primitives referencing the template will inherit all meta-attributes, instance attributes, utilization
attributes and operations defined in the template. And you can define specific attributes and
operations for any of the primitives. If any of these are defined in both the template and the primitive,
the values defined in the primitive will take precedence over the ones defined in the template.

Hence, resource templates help to reduce the amount of configuration work. If any changes are
needed, they can be done to the template definition and will take effect globally in all resource
definitions referencing that template.

Resource templates have a syntax similar to that of primitives.

Example 11.1. Resource template for a migratable Xen virtual machine

<template id="vm-template" class="ocf" provider="heartbeat" type="Xen">
 <meta_attributes id="vm-template-meta_attributes">
 <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate"
 value="true"/>
 </meta_attributes>
 <utilization id="vm-template-utilization">
 <nvpair id="vm-template-utilization-memory" name="memory" value="512"/>
 </utilization>
 <operations>
 <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
 <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>
 </operations>
</template>

Chapter 11. Reusing Parts of the Configuration

106

Once you define a resource template, you can use it in primitives by specifying the template
property.

Example 11.2. Xen primitive resource using a resource template

<primitive id="vm1" template="vm-template">
 <instance_attributes id="vm1-instance_attributes">
 <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
 <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/
vm1"/>
 </instance_attributes>
</primitive>

In the example above, the new primitive vm1 will inherit everything from vm-template. For example,
the equivalent of the above two examples would be:

Example 11.3. Equivalent Xen primitive resource not using a resource template

<primitive id="vm1" class="ocf" provider="heartbeat" type="Xen">
 <meta_attributes id="vm-template-meta_attributes">
 <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate"
 value="true"/>
 </meta_attributes>
 <utilization id="vm-template-utilization">
 <nvpair id="vm-template-utilization-memory" name="memory" value="512"/>
 </utilization>
 <operations>
 <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
 <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>
 </operations>
 <instance_attributes id="vm1-instance_attributes">
 <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
 <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/
vm1"/>
 </instance_attributes>
</primitive>

If you want to overwrite some attributes or operations, add them to the particular primitive’s definition.

Example 11.4. Xen resource overriding template values

<primitive id="vm2" template="vm-template">
 <meta_attributes id="vm2-meta_attributes">
 <nvpair id="vm2-meta_attributes-allow-migrate" name="allow-migrate" value="false"/>
 </meta_attributes>
 <utilization id="vm2-utilization">
 <nvpair id="vm2-utilization-memory" name="memory" value="1024"/>
 </utilization>
 <instance_attributes id="vm2-instance_attributes">
 <nvpair id="vm2-instance_attributes-name" name="name" value="vm2"/>
 <nvpair id="vm2-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/
vm2"/>
 </instance_attributes>
 <operations>
 <op id="vm2-monitor-30s" interval="30s" name="monitor" timeout="120s"/>
 <op id="vm2-stop-0" interval="0" name="stop" timeout="60s"/>
 </operations>
</primitive>

Using Templates in Constraints

107

In the example above, the new primitive vm2 has special attribute values. Its monitor operation has a
longer timeout and interval, and the primitive has an additional stop operation.

To see the resulting definition of a resource, run:

crm_resource --query-xml --resource vm2

To see the raw definition of a resource in the CIB, run:

crm_resource --query-xml-raw --resource vm2

11.1.2. Using Templates in Constraints
A resource template can be referenced in the following types of constraints:

• order constraints (see Section 6.3, “Specifying the Order in which Resources Should Start/Stop”)

• colocation constraints (see Section 6.4, “Placing Resources Relative to other Resources”)

• rsc_ticket constraints (for multi-site clusters as described in Section 15.3, “Configuring Ticket
Dependencies”)

Resource templates referenced in constraints stand for all primitives which are derived from that
template. This means, the constraint applies to all primitive resources referencing the resource
template. Referencing resource templates in constraints is an alternative to resource sets and can
simplify the cluster configuration considerably.

For example, given the example templates earlier in this section:

<rsc_colocation id="vm-template-colo-base-rsc" rsc="vm-template" rsc-role="Started" with-
rsc="base-rsc" score="INFINITY"/>

would colocate all VMs with base-rsc and is the equivalent of the following constraint configuration:

<rsc_colocation id="vm-colo-base-rsc" score="INFINITY">
 <resource_set id="vm-colo-base-rsc-0" sequential="false" role="Started">
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 </resource_set>
 <resource_set id="vm-colo-base-rsc-1">
 <resource_ref id="base-rsc"/>
 </resource_set>
</rsc_colocation>

Note

In a colocation constraint, only one template may be referenced from either rsc or with-rsc;
the other reference must be a regular resource.

11.1.3. Using Templates in Resource Sets
Resource templates can also be referenced in resource sets.

For example, given the example templates earlier in this section, then:

Chapter 11. Reusing Parts of the Configuration

108

<rsc_order id="order1" score="INFINITY">
 <resource_set id="order1-0">
 <resource_ref id="base-rsc"/>
 <resource_ref id="vm-template"/>
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

is the equivalent of the following constraint using a sequential resource set:

<rsc_order id="order1" score="INFINITY">
 <resource_set id="order1-0">
 <resource_ref id="base-rsc"/>
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

Or, if the resources referencing the template can run in parallel, then:

<rsc_order id="order2" score="INFINITY">
 <resource_set id="order2-0">
 <resource_ref id="base-rsc"/>
 </resource_set>
 <resource_set id="order2-1" sequential="false">
 <resource_ref id="vm-template"/>
 </resource_set>
 <resource_set id="order2-2">
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

is the equivalent of the following constraint configuration:

<rsc_order id="order2" score="INFINITY">
 <resource_set id="order2-0">
 <resource_ref id="base-rsc"/>
 </resource_set>
 <resource_set id="order2-1" sequential="false">
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 </resource_set>
 <resource_set id="order2-2">
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

11.2. Reusing Rules, Options and Sets of Operations
Sometimes a number of constraints need to use the same set of rules, and resources need to set the
same options and parameters. To simplify this situation, you can refer to an existing object using an
id-ref instead of an id.

So if for one resource you have

<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>

Tagging Configuration Elements

109

 </rule>
</rsc_location>

Then instead of duplicating the rule for all your other resources, you can instead specify:

Example 11.5. Referencing rules from other constraints

<rsc_location id="WebDB-connectivity" rsc="WebDB">
 <rule id-ref="ping-prefer-rule"/>
</rsc_location>

Important

The cluster will insist that the rule exists somewhere. Attempting to add a reference to a non-
existing rule will cause a validation failure, as will attempting to remove a rule that is referenced
elsewhere.

The same principle applies for meta_attributes and instance_attributes as illustrated in the
example below:

Example 11.6. Referencing attributes, options, and operations from other resources

<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
 <instance_attributes id="mySpecialRsc-attrs" score="1" >
 <nvpair id="default-interface" name="interface" value="eth0"/>
 <nvpair id="default-port" name="port" value="9999"/>
 </instance_attributes>
 <meta_attributes id="mySpecialRsc-options">
 <nvpair id="failure-timeout" name="failure-timeout" value="5m"/>
 <nvpair id="migration-threshold" name="migration-threshold" value="1"/>
 <nvpair id="stickiness" name="resource-stickiness" value="0"/>
 </meta_attributes>
 <operations id="health-checks">
 <op id="health-check" name="monitor" interval="60s"/>
 <op id="health-check" name="monitor" interval="30min"/>
 </operations>
</primitive>
<primitive id="myOtherlRsc" class="ocf" type="Other" provider="me">
 <instance_attributes id-ref="mySpecialRsc-attrs"/>
 <meta_attributes id-ref="mySpecialRsc-options"/>
 <operations id-ref="health-checks"/>
</primitive>

11.3. Tagging Configuration Elements
Pacemaker allows you to tag any configuration element that has an XML ID.

The main purpose of tagging is to support higher-level user interface tools; Pacemaker itself only uses
tags within constraints. Therefore, what you can do with tags mostly depends on the tools you use.

11.3.1. Configuring Tags
A tag is simply a named list of XML IDs.

Chapter 11. Reusing Parts of the Configuration

110

Example 11.7. Tag referencing three resources

<tags>
 <tag id="all-vms">
 <obj_ref id="vm1"/>
 <obj_ref id="vm2"/>
 <obj_ref id="vm3"/>
 </tag>
</tags>

What you can do with this new tag depends on what your higher-level tools support. For example, a
tool might allow you to enable or disable all of the tagged resources at once, or show the status of just
the tagged resources.

A single configuration element can be listed in any number of tags.

11.3.2. Using Tags in Constraints and Resource Sets
Pacemaker itself only uses tags in constraints. If you supply a tag name instead of a resource name in
any constraint, the constraint will apply to all resources listed in that tag.

Example 11.8. Constraint using a tag

<rsc_order id="order1" first="storage" then="all-vms" kind="Mandatory" />

In the example above, assuming the all-vms tag is defined as in the previous example, the
constraint will behave the same as:

Example 11.9. Equivalent constraints without tags

<rsc_order id="order1-1" first="storage" then="vm1" kind="Mandatory" />
<rsc_order id="order1-2" first="storage" then="vm2" kind="Mandatory" />
<rsc_order id="order1-3" first="storage" then="vm2" kind="Mandatory" />

A tag may be used directly in the constraint, or indirectly by being listed in a resource set used in the
constraint. When used in a resource set, an expanded tag will honor the set’s sequential property.

Chapter 12.

111

Utilization and Placement Strategy

Table of Contents
12.1. Utilization attributes ... 111
12.2. Placement Strategy ... 112
12.3. Allocation Details ... 113

12.3.1. Which node is preferred to get consumed first when allocating resources? 113
12.3.2. Which node has more free capacity? ... 113
12.3.3. Which resource is preferred to be assigned first? ... 113

12.4. Limitations and Workarounds ... 114

Pacemaker decides where to place a resource according to the resource allocation scores on every
node. The resource will be allocated to the node where the resource has the highest score.

If the resource allocation scores on all the nodes are equal, by the default placement strategy,
Pacemaker will choose a node with the least number of allocated resources for balancing the load. If
the number of resources on each node is equal, the first eligible node listed in the CIB will be chosen
to run the resource.

Often, in real-world situations, different resources use significantly different proportions of a node’s
capacities (memory, I/O, etc.). We cannot balance the load ideally just according to the number of
resources allocated to a node. Besides, if resources are placed such that their combined requirements
exceed the provided capacity, they may fail to start completely or run with degraded performance.

To take these factors into account, Pacemaker allows you to configure:

1. The capacity a certain node provides.

2. The capacity a certain resource requires.

3. An overall strategy for placement of resources.

12.1. Utilization attributes
To configure the capacity that a node provides or a resource requires, you can use utilization attributes
in node and resource objects. You can name utilization attributes according to your preferences and
define as many name/value pairs as your configuration needs. However, the attributes' values must be
integers.

Example 12.1. Specifying CPU and RAM capacities of two nodes

<node id="node1" type="normal" uname="node1">
 <utilization id="node1-utilization">
 <nvpair id="node1-utilization-cpu" name="cpu" value="2"/>
 <nvpair id="node1-utilization-memory" name="memory" value="2048"/>
 </utilization>
</node>
<node id="node2" type="normal" uname="node2">
 <utilization id="node2-utilization">
 <nvpair id="node2-utilization-cpu" name="cpu" value="4"/>
 <nvpair id="node2-utilization-memory" name="memory" value="4096"/>
 </utilization>
</node>

Chapter 12. Utilization and Placement Strategy

112

Example 12.2. Specifying CPU and RAM consumed by several resources

<primitive id="rsc-small" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-small-utilization">
 <nvpair id="rsc-small-utilization-cpu" name="cpu" value="1"/>
 <nvpair id="rsc-small-utilization-memory" name="memory" value="1024"/>
 </utilization>
</primitive>
<primitive id="rsc-medium" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-medium-utilization">
 <nvpair id="rsc-medium-utilization-cpu" name="cpu" value="2"/>
 <nvpair id="rsc-medium-utilization-memory" name="memory" value="2048"/>
 </utilization>
</primitive>
<primitive id="rsc-large" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-large-utilization">
 <nvpair id="rsc-large-utilization-cpu" name="cpu" value="3"/>
 <nvpair id="rsc-large-utilization-memory" name="memory" value="3072"/>
 </utilization>
</primitive>

A node is considered eligible for a resource if it has sufficient free capacity to satisfy the resource’s
requirements. The nature of the required or provided capacities is completely irrelevant to
Pacemaker — it just makes sure that all capacity requirements of a resource are satisfied before
placing a resource to a node.

12.2. Placement Strategy
After you have configured the capacities your nodes provide and the capacities your resources
require, you need to set the placement-strategy in the global cluster options, otherwise the
capacity configurations have no effect.

Four values are available for the placement-strategy:

default
Utilization values are not taken into account at all. Resources are allocated according to allocation
scores. If scores are equal, resources are evenly distributed across nodes.

utilization
Utilization values are taken into account only when deciding whether a node is considered eligible
(i.e. whether it has sufficient free capacity to satisfy the resource’s requirements). Load-balancing
is still done based on the number of resources allocated to a node.

balanced
Utilization values are taken into account when deciding whether a node is eligible to serve a
resource and when load-balancing, so an attempt is made to spread the resources in a way that
optimizes resource performance.

minimal
Utilization values are taken into account only when deciding whether a node is eligible to serve a
resource. For load-balancing, an attempt is made to concentrate the resources on as few nodes
as possible, thereby enabling possible power savings on the remaining nodes.

Set placement-strategy with crm_attribute:

crm_attribute --name placement-strategy --update balanced

Allocation Details

113

Now Pacemaker will ensure the load from your resources will be distributed evenly throughout the
cluster, without the need for convoluted sets of colocation constraints.

12.3. Allocation Details

12.3.1. Which node is preferred to get consumed first when
allocating resources?
• The node with the highest node weight gets consumed first. Node weight is a score maintained by

the cluster to represent node health.

• If multiple nodes have the same node weight:

• If placement-strategy is default or utilization, the node that has the least number of
allocated resources gets consumed first.

• If their numbers of allocated resources are equal, the first eligible node listed in the CIB gets
consumed first.

• If placement-strategy is balanced, the node that has the most free capacity gets consumed
first.

• If the free capacities of the nodes are equal, the node that has the least number of allocated
resources gets consumed first.

• If their numbers of allocated resources are equal, the first eligible node listed in the CIB gets
consumed first.

• If placement-strategy is minimal, the first eligible node listed in the CIB gets consumed first.

12.3.2. Which node has more free capacity?
If only one type of utilization attribute has been defined, free capacity is a simple numeric comparison.

If multiple types of utilization attributes have been defined, then the node that is numerically highest in
the the most attribute types has the most free capacity. For example:

• If nodeA has more free cpus, and nodeB has more free memory, then their free capacities are
equal.

• If nodeA has more free cpus, while nodeB has more free memory and storage, then nodeB has
more free capacity.

12.3.3. Which resource is preferred to be assigned first?
• The resource that has the highest priority (see Section 5.4, “Resource Options”) gets allocated

first.

• If their priorities are equal, check whether they are already running. The resource that has the
highest score on the node where it’s running gets allocated first, to prevent resource shuffling.

• If the scores above are equal or the resources are not running, the resource has the highest score
on the preferred node gets allocated first.

• If the scores above are equal, the first runnable resource listed in the CIB gets allocated first.

Chapter 12. Utilization and Placement Strategy

114

12.4. Limitations and Workarounds
The type of problem Pacemaker is dealing with here is known as the knapsack problem1 and falls into
the NP-complete2 category of computer science problems — a fancy way of saying "it takes a really
long time to solve".

Clearly in a HA cluster, it’s not acceptable to spend minutes, let alone hours or days, finding an
optimal solution while services remain unavailable.

So instead of trying to solve the problem completely, Pacemaker uses a best effort algorithm for
determining which node should host a particular service. This means it arrives at a solution much
faster than traditional linear programming algorithms, but by doing so at the price of leaving some
services stopped.

In the contrived example at the start of this section:

• rsc-small would be allocated to node1

• rsc-medium would be allocated to node2

• rsc-large would remain inactive

Which is not ideal.

There are various approaches to dealing with the limitations of pacemaker’s placement strategy:

 Ensure you have sufficient physical capacity.
It might sound obvious, but if the physical capacity of your nodes is (close to) maxed out by the
cluster under normal conditions, then failover isn’t going to go well. Even without the utilization
feature, you’ll start hitting timeouts and getting secondary failures.

 Build some buffer into the capabilities advertised by the nodes.
Advertise slightly more resources than we physically have, on the (usually valid) assumption that
a resource will not use 100% of the configured amount of CPU, memory and so forth all the time.
This practice is sometimes called overcommit.

 Specify resource priorities.
If the cluster is going to sacrifice services, it should be the ones you care about (comparatively)
the least. Ensure that resource priorities are properly set so that your most important resources
are scheduled first.

1 http://en.wikipedia.org/wiki/Knapsack_problem
2 http://en.wikipedia.org/wiki/NP-complete

http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/NP-complete

Chapter 13.

115

STONITH

Table of Contents
13.1. What Is STONITH? ... 115
13.2. What STONITH Device Should You Use? .. 115
13.3. Special Treatment of STONITH Resources ... 115
13.4. Unfencing .. 120
13.5. Configuring STONITH .. 120

13.5.1. Example STONITH Configuration .. 121
13.6. Advanced STONITH Configurations ... 123

13.6.1. Example Dual-Layer, Dual-Device Fencing Topologies ... 124
13.7. Remapping Reboots .. 130

13.1. What Is STONITH?
STONITH (an acronym for "Shoot The Other Node In The Head"), also called fencing, protects your
data from being corrupted by rogue nodes or concurrent access.

Just because a node is unresponsive, this doesn’t mean it isn’t accessing your data. The only way to
be 100% sure that your data is safe, is to use STONITH so we can be certain that the node is truly
offline, before allowing the data to be accessed from another node.

STONITH also has a role to play in the event that a clustered service cannot be stopped. In this case,
the cluster uses STONITH to force the whole node offline, thereby making it safe to start the service
elsewhere.

13.2. What STONITH Device Should You Use?
It is crucial that the STONITH device can allow the cluster to differentiate between a node failure and a
network one.

The biggest mistake people make in choosing a STONITH device is to use a remote power switch
(such as many on-board IPMI controllers) that shares power with the node it controls. In such cases,
the cluster cannot be sure if the node is really offline, or active and suffering from a network fault.

Likewise, any device that relies on the machine being active (such as SSH-based "devices" used
during testing) are inappropriate.

13.3. Special Treatment of STONITH Resources
STONITH resources are somewhat special in Pacemaker.

STONITH may be initiated by pacemaker or by other parts of the cluster (such as resources like
DRBD or DLM). To accommodate this, pacemaker does not require the STONITH resource to be in
the started state in order to be used, thus allowing reliable use of STONITH devices in such a case.

Chapter 13. STONITH

116

Note

In pacemaker versions 1.1.9 and earlier, this feature either did not exist or did not work well.
Only "running" STONITH resources could be used by Pacemaker for fencing, and if another
component tried to fence a node while Pacemaker was moving STONITH resources, the fencing
could fail.

All nodes have access to STONITH devices' definitions and instantiate them on-the-fly when needed,
but preference is given to verified instances, which are the ones that are started according to the
cluster’s knowledge.

In the case of a cluster split, the partition with a verified instance will have a slight advantage, because
the STONITH daemon in the other partition will have to hear from all its current peers before choosing
a node to perform the fencing.

Fencing resources do work the same as regular resources in some respects:

• target-role can be used to enable or disable the resource

• Location constraints can be used to prevent a specific node from using the resource

Important

Currently there is a limitation that fencing resources may only have one set of meta-attributes and
one set of instance attributes. This can be revisited if it becomes a significant limitation for people.

See the table below or run man stonithd to see special instance attributes that may be set for any
fencing resource, regardless of fence agent.

Table 13.1. Additional Properties of Fencing Resources

Field Type Default Description

stonith-timeout NA NA Older versions used this to override the default
period to wait for a STONITH (reboot, on, off)
action to complete for this device. It has been
replaced by the pcmk_reboot_timeout and
pcmk_off_timeout properties.

provides string Any special capability provided by the fence
device. Currently, only one such capability is
meaningful: unfencing (see Section 13.4,
“Unfencing”).

pcmk_host_map string A mapping of host names to ports numbers
for devices that do not support host names.
Example: node1:1;node2:2,3 tells the
cluster to use port 1 for node1 and ports 2 and
3 for node2.

Special Treatment of STONITH Resources

117

Field Type Default Description

pcmk_host_list string A list of machines controlled by this device
(optional unless pcmk_host_check is
static-list).

pcmk_host_check string dynamic-list How to determine which machines are
controlled by the device. Allowed values:

• dynamic-list: query the device

• static-list: check the
pcmk_host_list attribute

• none: assume every device can fence
every machine

pcmk_delay_max time 0s Enable a random delay of up to the time
specified before executing stonith actions.
This is sometimes used in two-node clusters
to ensure that the nodes don’t fence each
other at the same time. The overall delay
introduced by pacemaker is derived from this
random delay value adding a static delay
so that the sum is kept below the maximum
delay.

pcmk_delay_base time 0s Enable a static delay before executing stonith
actions. This can be used e.g. in two-node
clusters to ensure that the nodes don’t fence
each other, by having separate fencing
resources with different values. The node that
is fenced with the shorter delay will lose a
fencing race. The overall delay introduced by
pacemaker is derived from this value plus a
random delay such that the sum is kept below
the maximum delay.

pcmk_action_limit integer 1 The maximum number of actions that can
be performed in parallel on this device, if the
cluster option concurrent-fencing is
true. -1 is unlimited. (since 1.1.15)

pcmk_host_argumentstring port Advanced use only. Which parameter should
be supplied to the resource agent to identify
the node to be fenced. Some devices do not
support the standard port parameter or may
provide additional ones. Use this to specify
an alternate, device-specific parameter. A
value of none tells the cluster not to supply
any additional parameters.

Chapter 13. STONITH

118

Field Type Default Description

pcmk_reboot_actionstring reboot Advanced use only. The command to send to
the resource agent in order to reboot a node.
Some devices do not support the standard
commands or may provide additional ones.
Use this to specify an alternate, device-
specific command.

pcmk_reboot_timeouttime 60s Advanced use only. Specify an alternate
timeout to use for reboot actions instead
of the value of stonith-timeout. Some
devices need much more or less time to
complete than normal. Use this to specify an
alternate, device-specific timeout.

pcmk_reboot_retriesinteger 2 Advanced use only. The maximum number of
times to retry the reboot command within the
timeout period. Some devices do not support
multiple connections, and operations may
fail if the device is busy with another task,
so Pacemaker will automatically retry the
operation, if there is time remaining. Use this
option to alter the number of times Pacemaker
retries before giving up.

pcmk_off_action string off Advanced use only. The command to send
to the resource agent in order to shut down
a node. Some devices do not support the
standard commands or may provide additional
ones. Use this to specify an alternate, device-
specific command.

pcmk_off_timeout time 60s Advanced use only. Specify an alternate
timeout to use for off actions instead of the
value of stonith-timeout. Some devices
need much more or less time to complete
than normal. Use this to specify an alternate,
device-specific timeout.

pcmk_off_retries integer 2 Advanced use only. The maximum number
of times to retry the off command within the
timeout period. Some devices do not support
multiple connections, and operations may
fail if the device is busy with another task,
so Pacemaker will automatically retry the
operation, if there is time remaining. Use this
option to alter the number of times Pacemaker
retries before giving up.

pcmk_list_action string list Advanced use only. The command to send
to the resource agent in order to list nodes.
Some devices do not support the standard
commands or may provide additional ones.
Use this to specify an alternate, device-
specific command.

pcmk_list_timeout time 60s Advanced use only. Specify an alternate
timeout to use for list actions instead of the

Special Treatment of STONITH Resources

119

Field Type Default Description
value of stonith-timeout. Some devices
need much more or less time to complete
than normal. Use this to specify an alternate,
device-specific timeout.

pcmk_list_retries integer 2 Advanced use only. The maximum number of
times to retry the list command within the
timeout period. Some devices do not support
multiple connections, and operations may
fail if the device is busy with another task,
so Pacemaker will automatically retry the
operation, if there is time remaining. Use this
option to alter the number of times Pacemaker
retries before giving up.

pcmk_monitor_actionstring monitor Advanced use only. The command to send to
the resource agent in order to report extended
status. Some devices do not support the
standard commands or may provide additional
ones. Use this to specify an alternate, device-
specific command.

pcmk_monitor_timeouttime 60s Advanced use only. Specify an alternate
timeout to use for monitor actions instead
of the value of stonith-timeout. Some
devices need much more or less time to
complete than normal. Use this to specify an
alternate, device-specific timeout.

pcmk_monitor_retriesinteger 2 Advanced use only. The maximum number of
times to retry the monitor command within
the timeout period. Some devices do not
support multiple connections, and operations
may fail if the device is busy with another
task, so Pacemaker will automatically retry the
operation, if there is time remaining. Use this
option to alter the number of times Pacemaker
retries before giving up.

pcmk_status_actionstring status Advanced use only. The command to send to
the resource agent in order to report status.
Some devices do not support the standard
commands or may provide additional ones.
Use this to specify an alternate, device-
specific command.

pcmk_status_timeouttime 60s Advanced use only. Specify an alternate
timeout to use for status actions instead
of the value of stonith-timeout. Some
devices need much more or less time to
complete than normal. Use this to specify an
alternate, device-specific timeout.

pcmk_status_retriesinteger 2 Advanced use only. The maximum number of
times to retry the status command within the
timeout period. Some devices do not support
multiple connections, and operations may

Chapter 13. STONITH

120

Field Type Default Description
fail if the device is busy with another task,
so Pacemaker will automatically retry the
operation, if there is time remaining. Use this
option to alter the number of times Pacemaker
retries before giving up.

13.4. Unfencing
Most fence devices cut the power to the target. By contrast, fence devices that perform fabric fencing
cut off a node’s access to some critical resource, such as a shared disk or a network switch.

With fabric fencing, it is expected that the cluster will fence the node, and then a system administrator
must manually investigate what went wrong, correct any issues found, then reboot (or restart the
cluster services on) the node.

Once the node reboots and rejoins the cluster, some fabric fencing devices require that an explicit
command to restore the node’s access to the critical resource. This capability is called unfencing and
is typically implemented as the fence agent’s on command.

If any cluster resource has requires set to unfencing, then that resource will not be probed or
started on a node until that node has been unfenced.

13.5. Configuring STONITH

Note

Higher-level configuration shells include functionality to simplify the process below, particularly
the step for deciding which parameters are required. However since this document deals only
with core components, you should refer to the STONITH section of the Clusters from Scratch1

guide for those details.

1. Find the correct driver:

stonith_admin --list-installed

2. Find the required parameters associated with the device (replacing $AGENT_NAME with the
name obtained from the previous step):

stonith_admin --metadata --agent $AGENT_NAME

3. Create a file called stonith.xml containing a primitive resource with a class of stonith, a type
equal to the agent name obtained earlier, and a parameter for each of the values returned in the
previous step.

1 http://www.clusterlabs.org/doc/

http://www.clusterlabs.org/doc/
http://www.clusterlabs.org/doc/

Example STONITH Configuration

121

4. If the device does not know how to fence nodes based on their uname, you may also need to set
the special pcmk_host_map parameter. See man stonithd for details.

5. If the device does not support the list command, you may also need to set the special
pcmk_host_list and/or pcmk_host_check parameters. See man stonithd for details.

6. If the device does not expect the victim to be specified with the port parameter, you may also
need to set the special pcmk_host_argument parameter. See man stonithd for details.

7. Upload it into the CIB using cibadmin:

cibadmin -C -o resources --xml-file stonith.xml

8. Set stonith-enabled to true:

crm_attribute -t crm_config -n stonith-enabled -v true

9. Once the stonith resource is running, you can test it by executing the following (although you might
want to stop the cluster on that machine first):

stonith_admin --reboot nodename

13.5.1. Example STONITH Configuration
Assume we have an chassis containing four nodes and an IPMI device active on 192.0.2.1. We would
choose the fence_ipmilan driver, and obtain the following list of parameters:

Example 13.1. Obtaining a list of STONITH Parameters

stonith_admin --metadata -a fence_ipmilan

<resource-agent name="fence_ipmilan" shortdesc="Fence agent for IPMI over LAN">
 <symlink name="fence_ilo3" shortdesc="Fence agent for HP iLO3"/>
 <symlink name="fence_ilo4" shortdesc="Fence agent for HP iLO4"/>
 <symlink name="fence_idrac" shortdesc="Fence agent for Dell iDRAC"/>
 <symlink name="fence_imm" shortdesc="Fence agent for IBM Integrated Management Module"/>
 <longdesc>
 </longdesc>
 <vendor-url>
 </vendor-url>
 <parameters>
 <parameter name="auth" unique="0" required="0">
 <getopt mixed="-A"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="ipaddr" unique="0" required="1">
 <getopt mixed="-a"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="passwd" unique="0" required="0">
 <getopt mixed="-p"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>

Chapter 13. STONITH

122

 </parameter>
 <parameter name="passwd_script" unique="0" required="0">
 <getopt mixed="-S"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="lanplus" unique="0" required="0">
 <getopt mixed="-P"/>
 <content type="boolean"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="login" unique="0" required="0">
 <getopt mixed="-l"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="action" unique="0" required="0">
 <getopt mixed="-o"/>
 <content type="string" default="reboot"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="timeout" unique="0" required="0">
 <getopt mixed="-t"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="cipher" unique="0" required="0">
 <getopt mixed="-C"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="method" unique="0" required="0">
 <getopt mixed="-M"/>
 <content type="string" default="onoff"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="power_wait" unique="0" required="0">
 <getopt mixed="-T"/>
 <content type="string" default="2"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="delay" unique="0" required="0">
 <getopt mixed="-f"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="privlvl" unique="0" required="0">
 <getopt mixed="-L"/>
 <content type="string"/>
 <shortdesc>
 </shortdesc>
 </parameter>
 <parameter name="verbose" unique="0" required="0">
 <getopt mixed="-v"/>
 <content type="boolean"/>
 <shortdesc>
 </shortdesc>
 </parameter>

Advanced STONITH Configurations

123

 </parameters>
 <actions>
 <action name="on"/>
 <action name="off"/>
 <action name="reboot"/>
 <action name="status"/>
 <action name="diag"/>
 <action name="list"/>
 <action name="monitor"/>
 <action name="metadata"/>
 <action name="stop" timeout="20s"/>
 <action name="start" timeout="20s"/>
 </actions>
</resource-agent>

Based on that, we would create a STONITH resource fragment that might look like this:

Example 13.2. An IPMI-based STONITH Resource

<primitive id="Fencing" class="stonith" type="fence_ipmilan" >
 <instance_attributes id="Fencing-params" >
 <nvpair id="Fencing-passwd" name="passwd" value="testuser" />
 <nvpair id="Fencing-login" name="login" value="abc123" />
 <nvpair id="Fencing-ipaddr" name="ipaddr" value="192.0.2.1" />
 <nvpair id="Fencing-pcmk_host_list" name="pcmk_host_list" value="pcmk-1 pcmk-2" />
 </instance_attributes>
 <operations >
 <op id="Fencing-monitor-10m" interval="10m" name="monitor" timeout="300s" />
 </operations>
</primitive>

Finally, we need to enable STONITH:

crm_attribute -t crm_config -n stonith-enabled -v true

13.6. Advanced STONITH Configurations
Some people consider that having one fencing device is a single point of failure 2; others prefer
removing the node from the storage and network instead of turning it off.

Whatever the reason, Pacemaker supports fencing nodes with multiple devices through a feature
called fencing topologies.

Simply create the individual devices as you normally would, then define one or more fencing-level
entries in the fencing-topology section of the configuration.

• Each fencing level is attempted in order of ascending index. Allowed values are 1 through 9.

• If a device fails, processing terminates for the current level. No further devices in that level are
exercised, and the next level is attempted instead.

• If the operation succeeds for all the listed devices in a level, the level is deemed to have passed.

2 Not true, since a node or resource must fail before fencing even has a chance to

Chapter 13. STONITH

124

• The operation is finished when a level has passed (success), or all levels have been attempted
(failed).

• If the operation failed, the next step is determined by the Policy Engine and/or crmd.

Some possible uses of topologies include:

• Try poison-pill and fail back to power

• Try disk and network, and fall back to power if either fails

• Initiate a kdump and then poweroff the node

Table 13.2. Properties of Fencing Levels

Field Description

id A unique name for the level

target The name of a single node to which this level applies

target-pattern A regular expression matching the names of nodes to which this level
applies (since 1.1.14)

target-attribute The name of a node attribute that is set (to target-value) for nodes
to which this level applies (since 1.1.14)

target-value The node attribute value (of target-attribute) that is set for nodes
to which this level applies (since 1.1.14)

index The order in which to attempt the levels. Levels are attempted in
ascending order until one succeeds. Valid values are 1 through 9.

devices A comma-separated list of devices that must all be tried for this level

Example 13.3. Fencing topology with different devices for different nodes

 <cib crm_feature_set="3.0.6" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0"
 num_updates="0">
 <configuration>
 ...
 <fencing-topology>
 <!-- For pcmk-1, try poison-pill and fail back to power -->
 <fencing-level id="f-p1.1" target="pcmk-1" index="1" devices="poison-pill"/>
 <fencing-level id="f-p1.2" target="pcmk-1" index="2" devices="power"/>

 <!-- For pcmk-2, try disk and network, and fail back to power -->
 <fencing-level id="f-p2.1" target="pcmk-2" index="1" devices="disk,network"/>
 <fencing-level id="f-p2.2" target="pcmk-2" index="2" devices="power"/>
 </fencing-topology>
 ...
 <configuration>
 <status/>
</cib>

13.6.1. Example Dual-Layer, Dual-Device Fencing Topologies
The following example illustrates an advanced use of fencing-topology in a cluster with the
following properties:

• 3 nodes (2 active prod-mysql nodes, 1 prod_mysql-rep in standby for quorum purposes)

• the active nodes have an IPMI-controlled power board reached at 192.0.2.1 and 192.0.2.2

Example Dual-Layer, Dual-Device Fencing Topologies

125

• the active nodes also have two independent PSUs (Power Supply Units) connected to two
independent PDUs (Power Distribution Units) reached at 198.51.100.1 (port 10 and port 11) and
203.0.113.1 (port 10 and port 11)

• the first fencing method uses the fence_ipmi agent

• the second fencing method uses the fence_apc_snmp agent targetting 2 fencing devices (one per
PSU, either port 10 or 11)

• fencing is only implemented for the active nodes and has location constraints

• fencing topology is set to try IPMI fencing first then default to a "sure-kill" dual PDU fencing

In a normal failure scenario, STONITH will first select fence_ipmi to try to kill the faulty node.
Using a fencing topology, if that first method fails, STONITH will then move on to selecting
fence_apc_snmp twice:

• once for the first PDU

• again for the second PDU

The fence action is considered successful only if both PDUs report the required status. If any of them
fails, STONITH loops back to the first fencing method, fence_ipmi, and so on until the node is
fenced or fencing action is cancelled.

First fencing method: single IPMI device
Each cluster node has it own dedicated IPMI channel that can be called for fencing using the following
primitives:

<primitive class="stonith" id="fence_prod-mysql1_ipmi" type="fence_ipmilan">
 <instance_attributes id="fence_prod-mysql1_ipmi-instance_attributes">
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-ipaddr" name="ipaddr"
 value="192.0.2.1"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-action" name="action" value="off"/
>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-passwd" name="passwd"
 value="finishme"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-verbose" name="verbose"
 value="true"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql1"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-lanplus" name="lanplus"
 value="true"/>
 </instance_attributes>
</primitive>
<primitive class="stonith" id="fence_prod-mysql2_ipmi" type="fence_ipmilan">
 <instance_attributes id="fence_prod-mysql2_ipmi-instance_attributes">
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-ipaddr" name="ipaddr"
 value="192.0.2.2"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-action" name="action" value="off"/
>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-passwd" name="passwd"
 value="finishme"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-verbose" name="verbose"
 value="true"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql2"/>

Chapter 13. STONITH

126

 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-lanplus" name="lanplus"
 value="true"/>
 </instance_attributes>
</primitive>

Second fencing method: dual PDU devices
Each cluster node also has two distinct power channels controlled by two distinct PDUs. That means a
total of 4 fencing devices configured as follows:

• Node 1, PDU 1, PSU 1 @ port 10

• Node 1, PDU 2, PSU 2 @ port 10

• Node 2, PDU 1, PSU 1 @ port 11

• Node 2, PDU 2, PSU 2 @ port 11

The matching fencing agents are configured as follows:

<primitive class="stonith" id="fence_prod-mysql1_apc1" type="fence_apc_snmp">
 <instance_attributes id="fence_prod-mysql1_apc1-instance_attributes">
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-ipaddr" name="ipaddr"
 value="198.51.100.1"/>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-action" name="action" value="off"/
>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-port" name="port" value="10"/>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-passwd" name="passwd"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql1"/>
 </instance_attributes>
</primitive>
<primitive class="stonith" id="fence_prod-mysql1_apc2" type="fence_apc_snmp">
 <instance_attributes id="fence_prod-mysql1_apc2-instance_attributes">
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-ipaddr" name="ipaddr"
 value="203.0.113.1"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-action" name="action" value="off"/
>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-port" name="port" value="10"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-passwd" name="passwd"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql1"/>
 </instance_attributes>
</primitive>
<primitive class="stonith" id="fence_prod-mysql2_apc1" type="fence_apc_snmp">
 <instance_attributes id="fence_prod-mysql2_apc1-instance_attributes">
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-ipaddr" name="ipaddr"
 value="198.51.100.1"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-action" name="action" value="off"/
>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-port" name="port" value="11"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-passwd" name="passwd"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql2"/>
 </instance_attributes>

Example Dual-Layer, Dual-Device Fencing Topologies

127

</primitive>
<primitive class="stonith" id="fence_prod-mysql2_apc2" type="fence_apc_snmp">
 <instance_attributes id="fence_prod-mysql2_apc2-instance_attributes">
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-ipaddr" name="ipaddr"
 value="203.0.113.1"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-action" name="action" value="off"/
>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-port" name="port" value="11"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-passwd" name="passwd"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql2"/>
 </instance_attributes>
</primitive>

Location Constraints
To prevent STONITH from trying to run a fencing agent on the same node it is supposed to fence,
constraints are placed on all the fencing primitives:

<constraints>
 <rsc_location id="l_fence_prod-mysql1_ipmi" node="prod-mysql1" rsc="fence_prod-mysql1_ipmi"
 score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql2_ipmi" node="prod-mysql2" rsc="fence_prod-mysql2_ipmi"
 score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql1_apc2" node="prod-mysql1" rsc="fence_prod-mysql1_apc2"
 score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql1_apc1" node="prod-mysql1" rsc="fence_prod-mysql1_apc1"
 score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql2_apc1" node="prod-mysql2" rsc="fence_prod-mysql2_apc1"
 score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql2_apc2" node="prod-mysql2" rsc="fence_prod-mysql2_apc2"
 score="-INFINITY"/>
</constraints>

Fencing topology
Now that all the fencing resources are defined, it’s time to create the right topology. We want to first
fence using IPMI and if that does not work, fence both PDUs to effectively and surely kill the node.

<fencing-topology>
 <fencing-level devices="fence_prod-mysql1_ipmi" id="fencing-2" index="1" target="prod-
mysql1"/>
 <fencing-level devices="fence_prod-mysql1_apc1,fence_prod-mysql1_apc2" id="fencing-3"
 index="2" target="prod-mysql1"/>
 <fencing-level devices="fence_prod-mysql2_ipmi" id="fencing-0" index="1" target="prod-
mysql2"/>
 <fencing-level devices="fence_prod-mysql2_apc1,fence_prod-mysql2_apc2" id="fencing-1"
 index="2" target="prod-mysql2"/>
</fencing-topology>

Please note, in fencing-topology, the lowest index value determines the priority of the first
fencing method.

Final configuration
Put together, the configuration looks like this:

Chapter 13. STONITH

128

<cib admin_epoch="0" crm_feature_set="3.0.7" epoch="292" have-quorum="1" num_updates="29"
 validate-with="pacemaker-1.2">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled"
 value="true"/>
 <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="off"/>
 <nvpair id="cib-bootstrap-options-expected-quorum-votes" name="expected-quorum-votes"
 value="3"/>
 ...
 </cluster_property_set>
 </crm_config>
 <nodes>
 <node id="prod-mysql1" uname="prod-mysql1">
 <node id="prod-mysql2" uname="prod-mysql2"/>
 <node id="prod-mysql-rep1" uname="prod-mysql-rep1"/>
 <instance_attributes id="prod-mysql-rep1">
 <nvpair id="prod-mysql-rep1-standby" name="standby" value="on"/>
 </instance_attributes>
 </node>
 </nodes>
 <resources>
 <primitive class="stonith" id="fence_prod-mysql1_ipmi" type="fence_ipmilan">
 <instance_attributes id="fence_prod-mysql1_ipmi-instance_attributes">
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-ipaddr" name="ipaddr"
 value="192.0.2.1"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-action" name="action"
 value="off"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-passwd" name="passwd"
 value="finishme"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-verbose" name="verbose"
 value="true"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql1"/>
 <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-lanplus" name="lanplus"
 value="true"/>
 </instance_attributes>
 </primitive>
 <primitive class="stonith" id="fence_prod-mysql2_ipmi" type="fence_ipmilan">
 <instance_attributes id="fence_prod-mysql2_ipmi-instance_attributes">
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-ipaddr" name="ipaddr"
 value="192.0.2.2"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-action" name="action"
 value="off"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-passwd" name="passwd"
 value="finishme"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-verbose" name="verbose"
 value="true"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql2"/>
 <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-lanplus" name="lanplus"
 value="true"/>
 </instance_attributes>
 </primitive>
 <primitive class="stonith" id="fence_prod-mysql1_apc1" type="fence_apc_snmp">
 <instance_attributes id="fence_prod-mysql1_apc1-instance_attributes">
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-ipaddr" name="ipaddr"
 value="198.51.100.1"/>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-action" name="action"
 value="off"/>

Example Dual-Layer, Dual-Device Fencing Topologies

129

 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-port" name="port"
 value="10"/>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-passwd" name="passwd"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_apc1-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql1"/>
 </instance_attributes>
 </primitive>
 <primitive class="stonith" id="fence_prod-mysql1_apc2" type="fence_apc_snmp">
 <instance_attributes id="fence_prod-mysql1_apc2-instance_attributes">
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-ipaddr" name="ipaddr"
 value="203.0.113.1"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-action" name="action"
 value="off"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-port" name="port"
 value="10"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-passwd" name="passwd"
 value="fencing"/>
 <nvpair id="fence_prod-mysql1_apc2-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql1"/>
 </instance_attributes>
 </primitive>
 <primitive class="stonith" id="fence_prod-mysql2_apc1" type="fence_apc_snmp">
 <instance_attributes id="fence_prod-mysql2_apc1-instance_attributes">
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-ipaddr" name="ipaddr"
 value="198.51.100.1"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-action" name="action"
 value="off"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-port" name="port"
 value="11"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-passwd" name="passwd"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_apc1-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql2"/>
 </instance_attributes>
 </primitive>
 <primitive class="stonith" id="fence_prod-mysql2_apc2" type="fence_apc_snmp">
 <instance_attributes id="fence_prod-mysql2_apc2-instance_attributes">
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-ipaddr" name="ipaddr"
 value="203.0.113.1"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-action" name="action"
 value="off"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-port" name="port"
 value="11"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-login" name="login"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-passwd" name="passwd"
 value="fencing"/>
 <nvpair id="fence_prod-mysql2_apc2-instance_attributes-pcmk_host_list"
 name="pcmk_host_list" value="prod-mysql2"/>
 </instance_attributes>
 </primitive>
 </resources>
 <constraints>
 <rsc_location id="l_fence_prod-mysql1_ipmi" node="prod-mysql1" rsc="fence_prod-
mysql1_ipmi" score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql2_ipmi" node="prod-mysql2" rsc="fence_prod-
mysql2_ipmi" score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql1_apc2" node="prod-mysql1" rsc="fence_prod-
mysql1_apc2" score="-INFINITY"/>

Chapter 13. STONITH

130

 <rsc_location id="l_fence_prod-mysql1_apc1" node="prod-mysql1" rsc="fence_prod-
mysql1_apc1" score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql2_apc1" node="prod-mysql2" rsc="fence_prod-
mysql2_apc1" score="-INFINITY"/>
 <rsc_location id="l_fence_prod-mysql2_apc2" node="prod-mysql2" rsc="fence_prod-
mysql2_apc2" score="-INFINITY"/>
 </constraints>
 <fencing-topology>
 <fencing-level devices="fence_prod-mysql1_ipmi" id="fencing-2" index="1" target="prod-
mysql1"/>
 <fencing-level devices="fence_prod-mysql1_apc1,fence_prod-mysql1_apc2" id="fencing-3"
 index="2" target="prod-mysql1"/>
 <fencing-level devices="fence_prod-mysql2_ipmi" id="fencing-0" index="1" target="prod-
mysql2"/>
 <fencing-level devices="fence_prod-mysql2_apc1,fence_prod-mysql2_apc2" id="fencing-1"
 index="2" target="prod-mysql2"/>
 </fencing-topology>
 ...
 </configuration>
</cib>

13.7. Remapping Reboots
When the cluster needs to reboot a node, whether because stonith-action is reboot or because
a reboot was manually requested (such as by stonith_admin --reboot), it will remap that to
other commands in two cases:

1. If the chosen fencing device does not support the reboot command, the cluster will ask it to
perform off instead.

2. If a fencing topology level with multiple devices must be executed, the cluster will ask all the
devices to perform off, then ask the devices to perform on.

To understand the second case, consider the example of a node with redundant power supplies
connected to intelligent power switches. Rebooting one switch and then the other would have no effect
on the node. Turning both switches off, and then on, actually reboots the node.

In such a case, the fencing operation will be treated as successful as long as the off commands
succeed, because then it is safe for the cluster to recover any resources that were on the node.
Timeouts and errors in the on phase will be logged but ignored.

When a reboot operation is remapped, any action-specific timeout for the remapped action will
be used (for example, pcmk_off_timeout will be used when executing the off command, not
pcmk_reboot_timeout).

Note

In Pacemaker versions 1.1.13 and earlier, reboots will not be remapped in the second case. To
achieve the same effect, separate fencing devices for off and on actions must be configured.

Chapter 14.

131

Status — Here be dragons

Table of Contents
14.1. Node Status .. 131
14.2. Transient Node Attributes .. 132
14.3. Operation History .. 132

14.3.1. Simple Operation History Example .. 134
14.3.2. Complex Operation History Example ... 135

Most users never need to understand the contents of the status section and can be happy with the
output from crm_mon.

However for those with a curious inclination, this section attempts to provide an overview of its
contents.

14.1. Node Status

In addition to the cluster’s configuration, the CIB holds an up-to-date representation of each cluster
node in the status section.

Example 14.1. A bare-bones status entry for a healthy node cl-virt-1

 <node_state id="cl-virt-1" uname="cl-virt-2" ha="active" in_ccm="true" crmd="online"
 join="member" expected="member" crm-debug-origin="do_update_resource">
 <transient_attributes id="cl-virt-1"/>
 <lrm id="cl-virt-1"/>
 </node_state>

Users are highly recommended not to modify any part of a node’s state directly. The cluster will
periodically regenerate the entire section from authoritative sources, so any changes should be done
with the tools appropriate to those sources.

Table 14.1. Authoritative Sources for State Information

CIB Object Authoritative Source

node_state crmd

transient_attributes attrd

lrm lrmd

The fields used in the node_state objects are named as they are largely for historical reasons
and are rooted in Pacemaker’s origins as the Heartbeat resource manager. They have remained
unchanged to preserve compatibility with older versions.

Table 14.2. Node Status Fields

Field Description

id Unique identifier for the node. Corosync-based clusters use a numeric
counter, while Heartbeat clusters use a (barely) human-readable UUID.

uname The node’s machine name (output from uname -n).

Chapter 14. Status — Here be dragons

132

Field Description

ha Is the cluster software active on this node? Allowed values: active, dead.

in_ccm Is the node a member of the cluster? Allowed values: true, false.

crmd Is the crmd process active on the node? Allowed values: online,
offline.

join Does the node participate in hosting resources? Allowed values: down,
pending, member, banned.

expected Expected value for join.

crm-debug-
origin

 The origin of the most recent change(s). For diagnostic purposes.

The cluster uses these fields to determine whether, at the node level, the node is healthy or is in a
failed state and needs to be fenced.

14.2. Transient Node Attributes
Like regular node attributes, the name/value pairs listed in the transient_attributes section help
to describe the node. However they are forgotten by the cluster when the node goes offline. This can
be useful, for instance, when you want a node to be in standby mode (not able to run resources) just
until the next reboot.

In addition to any values the administrator sets, the cluster will also store information about failed
resources here.

Example 14.2. A set of transient node attributes for node cl-virt-1

<transient_attributes id="cl-virt-1">
 <instance_attributes id="status-cl-virt-1">
 <nvpair id="status-cl-virt-1-pingd" name="pingd" value="3"/>
 <nvpair id="status-cl-virt-1-probe_complete" name="probe_complete" value="true"/>
 <nvpair id="status-cl-virt-1-fail-count-pingd:0.monitor_30000" name="fail-count-
pingd:0#monitor_30000" value="1"/>
 <nvpair id="status-cl-virt-1-last-failure-pingd:0" name="last-failure-pingd:0"
 value="1239009742"/>
 </instance_attributes>
</transient_attributes>

In the above example, we can see that a monitor on the pingd:0 resource has failed once, at
09:22:22 UTC 6 April 2009. 1 We also see that the node is connected to three pingd peers and that all
known resources have been checked for on this machine (probe_complete).

14.3. Operation History

A node’s resource history is held in the lrm_resources tag (a child of the lrm tag). The information
stored here includes enough information for the cluster to stop the resource safely if it is removed
from the configuration section. Specifically, the resource’s id, class, type and provider are
stored.

1 You can use the standard date command to print a human-readable version of any seconds-since-epoch value, for example
date -d @1239009742.

Operation History

133

Example 14.3. A record of the apcstonith resource

<lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith"/>

Additionally, we store the last job for every combination of resource, action and interval. The
concatenation of the values in this tuple are used to create the id of the lrm_rsc_op object.

Table 14.3. Contents of an lrm_rsc_op job

Field Description

id

Identifier for the job constructed from the resource’s id,
operation and interval.

call-id

The job’s ticket number. Used as a sort key to determine the order
in which the jobs were executed.

operation

The action the resource agent was invoked with.

interval

The frequency, in milliseconds, at which the operation will be
repeated. A one-off job is indicated by 0.

op-status

The job’s status. Generally this will be either 0 (done) or -1
(pending). Rarely used in favor of rc-code.

rc-code

The job’s result. Refer to Section B.4, “OCF Return Codes”
for details on what the values here mean and how they are
interpreted.

last-run

Machine-local date/time, in seconds since epoch, at which the job
was executed. For diagnostic purposes.

last-rc-change

Machine-local date/time, in seconds since epoch, at which the
job first returned the current value of rc-code. For diagnostic
purposes.

exec-time

Time, in milliseconds, that the job was running for. For diagnostic
purposes.

queue-time

Time, in seconds, that the job was queued for in the LRMd. For
diagnostic purposes.

Chapter 14. Status — Here be dragons

134

Field Description

crm_feature_set

The version which this job description conforms to. Used when
processing op-digest.

transition-key

A concatenation of the job’s graph action number, the graph
number, the expected result and the UUID of the crmd instance
that scheduled it. This is used to construct transition-magic
(below).

transition-magic

A concatenation of the job’s op-status, rc-code and
transition-key. Guaranteed to be unique for the life of the
cluster (which ensures it is part of CIB update notifications) and
contains all the information needed for the crmd to correctly
analyze and process the completed job. Most importantly, the
decomposed elements tell the crmd if the job entry was expected
and whether it failed.

op-digest

An MD5 sum representing the parameters passed to the job.
Used to detect changes to the configuration, to restart resources if
necessary.

crm-debug-origin

The origin of the current values. For diagnostic purposes.

14.3.1. Simple Operation History Example

Example 14.4. A monitor operation (determines current state of the apcstonith resource)

<lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith">
 <lrm_rsc_op id="apcstonith_monitor_0" operation="monitor" call-id="2"
 rc-code="7" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 op-digest="2e3da9274d3550dc6526fb24bfcbcba0"
 transition-key="22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 transition-magic="0:7;22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-run="1239008085" last-rc-change="1239008085" exec-time="10" queue-time="0"/>
</lrm_resource>

In the above example, the job is a non-recurring monitor operation often referred to as a "probe" for
the apcstonith resource.

The cluster schedules probes for every configured resource on a node when the node first starts, in
order to determine the resource’s current state before it takes any further action.

From the transition-key, we can see that this was the 22nd action of the 2nd graph produced by
this instance of the crmd (2668bbeb-06d5-40f9-936d-24cb7f87006a).

The third field of the transition-key contains a 7, which indicates that the job expects to find the
resource inactive. By looking at the rc-code property, we see that this was the case.

Complex Operation History Example

135

As that is the only job recorded for this node, we can conclude that the cluster started the resource
elsewhere.

14.3.2. Complex Operation History Example

Example 14.5. Resource history of a pingd clone with multiple jobs

<lrm_resource id="pingd:0" type="pingd" class="ocf" provider="pacemaker">
 <lrm_rsc_op id="pingd:0_monitor_30000" operation="monitor" call-id="34"
 rc-code="0" op-status="0" interval="30000"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="10:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 ...
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/>
 <lrm_rsc_op id="pingd:0_stop_0" operation="stop"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" call-id="32"
 rc-code="0" op-status="0" interval="0"
 transition-key="11:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 ...
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/>
 <lrm_rsc_op id="pingd:0_start_0" operation="start" call-id="33"
 rc-code="0" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="31:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 ...
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0" />
 <lrm_rsc_op id="pingd:0_monitor_0" operation="monitor" call-id="3"
 rc-code="0" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="23:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 ...
 last-run="1239008085" last-rc-change="1239008085" exec-time="20" queue-time="0"/>
 </lrm_resource>

When more than one job record exists, it is important to first sort them by call-id before interpreting
them.

Once sorted, the above example can be summarized as:

1. A non-recurring monitor operation returning 7 (not running), with a call-id of 3

2. A stop operation returning 0 (success), with a call-id of 32

3. A start operation returning 0 (success), with a call-id of 33

4. A recurring monitor returning 0 (success), with a call-id of 34

The cluster processes each job record to build up a picture of the resource’s state. After the first and
second entries, it is considered stopped, and after the third it considered active.

Based on the last operation, we can tell that the resource is currently active.

Additionally, from the presence of a stop operation with a lower call-id than that of the start
operation, we can conclude that the resource has been restarted. Specifically this occurred as part of
actions 11 and 31 of transition 11 from the crmd instance with the key 2668bbeb…. This information
can be helpful for locating the relevant section of the logs when looking for the source of a failure.

136

Chapter 15.

137

Multi-Site Clusters and Tickets

Table of Contents
15.1. Challenges for Multi-Site Clusters .. 137
15.2. Conceptual Overview ... 137

15.2.1. Ticket ... 137
15.2.2. Dead Man Dependency .. 138
15.2.3. Cluster Ticket Registry .. 138
15.2.4. Configuration Replication .. 138

15.3. Configuring Ticket Dependencies ... 139
15.4. Managing Multi-Site Clusters ... 140

15.4.1. Granting and Revoking Tickets Manually ... 140
15.4.2. Granting and Revoking Tickets via a Cluster Ticket Registry 140
15.4.3. General Management of Tickets .. 141

15.5. For more information ... 142

Apart from local clusters, Pacemaker also supports multi-site clusters. That means you can have
multiple, geographically dispersed sites, each with a local cluster. Failover between these clusters can
be coordinated manually by the administrator, or automatically by a higher-level entity called a Cluster
Ticket Registry (CTR).

15.1. Challenges for Multi-Site Clusters
Typically, multi-site environments are too far apart to support synchronous communication and data
replication between the sites. That leads to significant challenges:

• How do we make sure that a cluster site is up and running?

• How do we make sure that resources are only started once?

• How do we make sure that quorum can be reached between the different sites and a split-brain
scenario avoided?

• How do we manage failover between sites?

• How do we deal with high latency in case of resources that need to be stopped?

In the following sections, learn how to meet these challenges.

15.2. Conceptual Overview
Multi-site clusters can be considered as “overlay” clusters where each cluster site corresponds to
a cluster node in a traditional cluster. The overlay cluster can be managed by a CTR in order to
guarantee that any cluster resource will be active on no more than one cluster site. This is achieved by
using tickets that are treated as failover domain between cluster sites, in case a site should be down.

The following sections explain the individual components and mechanisms that were introduced for
multi-site clusters in more detail.

15.2.1. Ticket
Tickets are, essentially, cluster-wide attributes. A ticket grants the right to run certain resources on a
specific cluster site. Resources can be bound to a certain ticket by rsc_ticket constraints. Only if

Chapter 15. Multi-Site Clusters and Tickets

138

the ticket is available at a site can the respective resources be started there. Vice versa, if the ticket is
revoked, the resources depending on that ticket must be stopped.

The ticket thus is similar to a site quorum, i.e. the permission to manage/own resources associated
with that site. (One can also think of the current have-quorum flag as a special, cluster-wide ticket
that is granted in case of node majority.)

Tickets can be granted and revoked either manually by administrators (which could be the default for
classic enterprise clusters), or via the automated CTR mechanism described below.

A ticket can only be owned by one site at a time. Initially, none of the sites has a ticket. Each ticket
must be granted once by the cluster administrator.

The presence or absence of tickets for a site is stored in the CIB as a cluster status. With regards to a
certain ticket, there are only two states for a site: true (the site has the ticket) or false (the site does
not have the ticket). The absence of a certain ticket (during the initial state of the multi-site cluster) is
the same as the value false.

15.2.2. Dead Man Dependency
A site can only activate resources safely if it can be sure that the other site has deactivated them.
However after a ticket is revoked, it can take a long time until all resources depending on that ticket
are stopped "cleanly", especially in case of cascaded resources. To cut that process short, the
concept of a Dead Man Dependency was introduced.

If a dead man dependency is in force, if a ticket is revoked from a site, the nodes that are hosting
dependent resources are fenced. This considerably speeds up the recovery process of the cluster and
makes sure that resources can be migrated more quickly.

This can be configured by specifying a loss-policy="fence" in rsc_ticket constraints.

15.2.3. Cluster Ticket Registry
A CTR is a coordinated group of network daemons that automatically handles granting, revoking, and
timing out tickets (instead of the administrator revoking the ticket somewhere, waiting for everything to
stop, and then granting it on the desired site).

Pacemaker does not implement its own CTR, but interoperates with external software designed for
that purpose (similar to how resource and fencing agents are not directly part of pacemaker).

Participating clusters run the CTR daemons, which connect to each other, exchange information about
their connectivity, and vote on which sites gets which tickets.

A ticket is granted to a site only once the CTR is sure that the ticket has been relinquished by the
previous owner, implemented via a timer in most scenarios. If a site loses connection to its peers,
its tickets time out and recovery occurs. After the connection timeout plus the recovery timeout has
passed, the other sites are allowed to re-acquire the ticket and start the resources again.

This can also be thought of as a "quorum server", except that it is not a single quorum ticket, but
several.

15.2.4. Configuration Replication
As usual, the CIB is synchronized within each cluster, but it is not synchronized across cluster sites of
a multi-site cluster. You have to configure the resources that will be highly available across the multi-
site cluster for every site accordingly.

Configuring Ticket Dependencies

139

15.3. Configuring Ticket Dependencies
The rsc_ticket constraint lets you specify the resources depending on a certain ticket. Together
with the constraint, you can set a loss-policy that defines what should happen to the respective
resources if the ticket is revoked.

The attribute loss-policy can have the following values:

• fence: Fence the nodes that are running the relevant resources.

• stop: Stop the relevant resources.

• freeze: Do nothing to the relevant resources.

• demote: Demote relevant resources that are running in master mode to slave mode.

Example 15.1. Constraint that fences node if ticketA is revoked

<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" ticket="ticketA" loss-policy="fence"/>

The example above creates a constraint with the ID rsc1-req-ticketA. It defines that the resource
rsc1 depends on ticketA and that the node running the resource should be fenced if ticketA is
revoked.

If resource rsc1 were a multi-state resource (i.e. it could run in master or slave mode), you might
want to configure that only master mode depends on ticketA. With the following configuration, rsc1
will be demoted to slave mode if ticketA is revoked:

Example 15.2. Constraint that demotes rsc1 if ticketA is revoked

<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" rsc-role="Master" ticket="ticketA" loss-
policy="demote"/>

You can create multiple rsc_ticket constraints to let multiple resources depend on the same ticket.
However, rsc_ticket also supports resource sets (see Section 6.5, “Resource Sets”), so one can
easily list all the resources in one rsc_ticket constraint instead.

Example 15.3. Ticket constraint for multiple resources

<rsc_ticket id="resources-dep-ticketA" ticket="ticketA" loss-policy="fence">
 <resource_set id="resources-dep-ticketA-0" role="Started">
 <resource_ref id="rsc1"/>
 <resource_ref id="group1"/>
 <resource_ref id="clone1"/>
 </resource_set>
 <resource_set id="resources-dep-ticketA-1" role="Master">
 <resource_ref id="ms1"/>
 </resource_set>
</rsc_ticket>

In the example above, there are two resource sets, so we can list resources with different roles in a
single rsc_ticket constraint. There’s no dependency between the two resource sets, and there’s
no dependency among the resources within a resource set. Each of the resources just depends on
ticketA.

Chapter 15. Multi-Site Clusters and Tickets

140

Referencing resource templates in rsc_ticket constraints, and even referencing them within
resource sets, is also supported.

If you want other resources to depend on further tickets, create as many constraints as necessary with
rsc_ticket.

15.4. Managing Multi-Site Clusters

15.4.1. Granting and Revoking Tickets Manually
You can grant tickets to sites or revoke them from sites manually. If you want to re-distribute a ticket,
you should wait for the dependent resources to stop cleanly at the previous site before you grant the
ticket to the new site.

Use the crm_ticket command line tool to grant and revoke tickets.

To grant a ticket to this site:

crm_ticket --ticket ticketA --grant

To revoke a ticket from this site:

crm_ticket --ticket ticketA --revoke

Important

If you are managing tickets manually, use the crm_ticket command with great care, because it
cannot check whether the same ticket is already granted elsewhere.

15.4.2. Granting and Revoking Tickets via a Cluster Ticket Registry
We will use Booth1 here as an example of software that can be used with pacemaker as a Cluster
Ticket Registry. Booth implements the Raft2 algorithm to guarantee the distributed consensus among
different cluster sites, and manages the ticket distribution (and thus the failover process between
sites).

Each of the participating clusters and arbitrators runs the Booth daemon boothd.

An arbitrator is the multi-site equivalent of a quorum-only node in a local cluster. If you have a setup
with an even number of sites, you need an additional instance to reach consensus about decisions
such as failover of resources across sites. In this case, add one or more arbitrators running at
additional sites. Arbitrators are single machines that run a booth instance in a special mode. An
arbitrator is especially important for a two-site scenario, otherwise there is no way for one site to
distinguish between a network failure between it and the other site, and a failure of the other site.

The most common multi-site scenario is probably a multi-site cluster with two sites and a single
arbitrator on a third site. However, technically, there are no limitations with regards to the number of
sites and the number of arbitrators involved.

1 https://github.com/ClusterLabs/booth
2 http://en.wikipedia.org/wiki/Raft_%28computer_science%29

https://github.com/ClusterLabs/booth
http://en.wikipedia.org/wiki/Raft_%28computer_science%29
https://github.com/ClusterLabs/booth
http://en.wikipedia.org/wiki/Raft_%28computer_science%29

General Management of Tickets

141

Boothd at each site connects to its peers running at the other sites and exchanges connectivity
details. Once a ticket is granted to a site, the booth mechanism will manage the ticket automatically:
If the site which holds the ticket is out of service, the booth daemons will vote which of the other sites
will get the ticket. To protect against brief connection failures, sites that lose the vote (either explicitly
or implicitly by being disconnected from the voting body) need to relinquish the ticket after a time-
out. Thus, it is made sure that a ticket will only be re-distributed after it has been relinquished by the
previous site. The resources that depend on that ticket will fail over to the new site holding the ticket.
The nodes that have run the resources before will be treated according to the loss-policy you set
within the rsc_ticket constraint.

Before the booth can manage a certain ticket within the multi-site cluster, you initially need to grant it
to a site manually via the booth command-line tool. After you have initially granted a ticket to a site,
boothd will take over and manage the ticket automatically.

Important

The booth command-line tool can be used to grant, list, or revoke tickets and can be run on any
machine where boothd is running. If you are managing tickets via Booth, use only booth for
manual intervention, not crm_ticket. That ensures the same ticket will only be owned by one
cluster site at a time.

15.4.2.1. Booth Requirements
• All clusters that will be part of the multi-site cluster must be based on Pacemaker.

• Booth must be installed on all cluster nodes and on all arbitrators that will be part of the multi-site
cluster.

• Nodes belonging to the same cluster site should be synchronized via NTP. However, time
synchronization is not required between the individual cluster sites.

15.4.3. General Management of Tickets
Display the information of tickets:

crm_ticket --info

Or you can monitor them with:

crm_mon --tickets

Display the rsc_ticket constraints that apply to a ticket:

crm_ticket --ticket ticketA --constraints

When you want to do maintenance or manual switch-over of a ticket, revoking the ticket would trigger
the loss policies. If loss-policy="fence", the dependent resources could not be gracefully
stopped/demoted, and other unrelated resources could even be affected.

The proper way is making the ticket standby first with:

crm_ticket --ticket ticketA --standby

Chapter 15. Multi-Site Clusters and Tickets

142

Then the dependent resources will be stopped or demoted gracefully without triggering the loss
policies.

If you have finished the maintenance and want to activate the ticket again, you can run:

crm_ticket --ticket ticketA --activate

15.5. For more information
• SUSE’s Geo Clustering quick start3

• Booth4

3 https://www.suse.com/documentation/sle-ha-geo-12/art_ha_geo_quick/data/art_ha_geo_quick.html
4 https://github.com/ClusterLabs/booth

https://www.suse.com/documentation/sle-ha-geo-12/art_ha_geo_quick/data/art_ha_geo_quick.html
https://github.com/ClusterLabs/booth
https://www.suse.com/documentation/sle-ha-geo-12/art_ha_geo_quick/data/art_ha_geo_quick.html
https://github.com/ClusterLabs/booth

143

Appendix A. FAQ
Q: Why is the Project Called Pacemaker?

A: First of all, the reason it’s not called the CRM is because of the abundance of terms 1 that
are commonly abbreviated to those three letters. The Pacemaker name came from Kham, 2 a
good friend of Pacemaker developer Andrew Beekhof’s, and was originally used by a Java GUI
that Beekhof was prototyping in early 2007. Alas, other commitments prevented the GUI from
progressing much and, when it came time to choose a name for this project, Lars Marowsky-
Bree suggested it was an even better fit for an independent CRM. The idea stems from the
analogy between the role of this software and that of the little device that keeps the human heart
pumping. Pacemaker monitors the cluster and intervenes when necessary to ensure the smooth
operation of the services it provides. There were a number of other names (and acronyms)
tossed around, but suffice to say "Pacemaker" was the best.

Q: Why was the Pacemaker Project Created?

A: The decision was made to spin-off the CRM into its own project after the 2.1.3 Heartbeat release
in order to:

• support both the Corosync and Heartbeat cluster stacks equally

• decouple the release cycles of two projects at very different stages of their life-cycles

• foster clearer package boundaries, thus leading to better and more stable interfaces

Q: What Messaging Layers are Supported?

A:

• Corosync3

• Heartbeat4

Q: Can I Choose Which Messaging Layer to Use at Run Time?

A: Yes. The CRM will automatically detect which started it and behave accordingly.

Q: Can I Have a Mixed Heartbeat-Corosync Cluster?

A: No.

Q: Which Messaging Layer Should I Choose?

A: You can choose from multiple messaging layers, including heartbeat, corosync 1 (with
or without CMAN), and corosync 2. Corosync 2 is the current state of the art due to its more
advanced features and better support for pacemaker, but often the best choice is to use
whatever comes with your Linux distribution, and follow the distribution’s setup instructions.

1 http://en.wikipedia.org/wiki/CRM
2 http://khamsouk.souvanlasy.com/
3 http://www.corosync.org/
4 http://linux-ha.org/

http://www.corosync.org/
http://linux-ha.org/
http://en.wikipedia.org/wiki/CRM
http://khamsouk.souvanlasy.com/
http://www.corosync.org/
http://linux-ha.org/

Appendix A. FAQ

144

Q: Where Can I Get Pre-built Packages?

A: Most major Linux distributions have pacemaker packages in their standard package repositories.
See the Install wiki page5 for details.

Q: What Versions of Pacemaker Are Supported?

A: Some Linux distributions (such as Red Hat Enterprise Linux and SUSE Linux Enterprise) offer
technical support for their customers; contact them for details of such support. For help within the
community (mailing lists, IRC, etc.) from Pacemaker developers and users, refer to the Releases
wiki page6 for an up-to-date list of versions considered to be supported by the project. When
seeking assistance, please try to ensure you have one of these versions.

5 http://clusterlabs.org/wiki/Install
6 http://clusterlabs.org/wiki/Releases

http://clusterlabs.org/wiki/Install
http://clusterlabs.org/wiki/Releases
http://clusterlabs.org/wiki/Releases
http://clusterlabs.org/wiki/Install
http://clusterlabs.org/wiki/Releases

145

Appendix B. More About OCF Resource
Agents

Table of Contents
B.1. Location of Custom Scripts ... 145
B.2. Actions ... 145
B.3. How are OCF Return Codes Interpreted? .. 146
B.4. OCF Return Codes ... 146

B.1. Location of Custom Scripts
 OCF Resource Agents are found in /usr/lib/ocf/resource.d/provider

When creating your own agents, you are encouraged to create a new directory under /usr/lib/
ocf/resource.d/ so that they are not confused with (or overwritten by) the agents shipped by
existing providers.

So, for example, if you choose the provider name of bigCorp and want a new resource named bigApp,
you would create a resource agent called /usr/lib/ocf/resource.d/bigCorp/bigApp and
define a resource:

<primitive id="custom-app" class="ocf" provider="bigCorp" type="bigApp"/>

B.2. Actions
All OCF resource agents are required to implement the following actions.

Table B.1. Required Actions for OCF Agents

Action Description Instructions

start Start the resource Return 0 on success and an appropriate error
code otherwise. Must not report success until the
resource is fully active.

stop Stop the resource Return 0 on success and an appropriate error
code otherwise. Must not report success until the
resource is fully stopped.

monitor Check the
resource’s state

Exit 0 if the resource is running, 7 if it is stopped,
and anything else if it is failed.

NOTE: The monitor script should test the state of
the resource on the local machine only.

meta-data Describe the
resource

Provide information about this resource as an
XML snippet. Exit with 0.

NOTE: This is not performed as root.

validate-all Verify the supplied
parameters

Return 0 if parameters are valid, 2 if not valid, and
6 if resource is not configured.

Additional requirements (not part of the OCF specification) are placed on agents that will be used for
advanced concepts such as clones and multi-state resources.

Appendix B. More About OCF Resource Agents

146

Table B.2. Optional Actions for OCF Resource Agents

Action Description Instructions

promote Promote the local instance of a multi-state resource
to the master (primary) state.

Return 0 on success

demote Demote the local instance of a multi-state resource
to the slave (secondary) state.

Return 0 on success

notify Used by the cluster to send the agent pre- and
post-notification events telling the resource what
has happened and will happen.

Must not fail. Must exit
with 0

One action specified in the OCF specs, recover, is not currently used by the cluster. It is intended to
be a variant of the start action that tries to recover a resource locally.

Important

If you create a new OCF resource agent, use ocf-tester to verify that the agent complies with
the OCF standard properly.

B.3. How are OCF Return Codes Interpreted?
The first thing the cluster does is to check the return code against the expected result. If the result
does not match the expected value, then the operation is considered to have failed, and recovery
action is initiated.

There are three types of failure recovery:

Table B.3. Types of recovery performed by the cluster

Type Description Action Taken by the Cluster

soft A transient error occurred Restart the resource or move it to a new
location

hard A non-transient error that may be
specific to the current node occurred

Move the resource elsewhere and
prevent it from being retried on the
current node

fatal A non-transient error that will be
common to all cluster nodes (e.g. a bad
configuration was specified)

Stop the resource and prevent it from
being started on any cluster node

B.4. OCF Return Codes
The following table outlines the different OCF return codes and the type of recovery the cluster will
initiate when a failure code is received. Although counterintuitive, even actions that return 0 (aka.
OCF_SUCCESS) can be considered to have failed, if 0 was not the expected return value.

Table B.4. OCF Return Codes and their Recovery Types

RC OCF Alias Description RT

0 OCF_SUCCESS Success. The command completed
successfully. This is the expected result for all
start, stop, promote and demote commands.

soft

OCF Return Codes

147

RC OCF Alias Description RT

1 OCF_ERR_GENERIC Generic "there was a problem" error code. soft

2 OCF_ERR_ARGS The resource’s configuration is not valid on
this machine. E.g. it refers to a location not
found on the node.

hard

3 OCF_ERR_UNIMPLEMENTED The requested action is not implemented. hard

4 OCF_ERR_PERM The resource agent does not have sufficient
privileges to complete the task.

hard

5 OCF_ERR_INSTALLED The tools required by the resource are not
installed on this machine.

hard

6 OCF_ERR_CONFIGURED The resource’s configuration is invalid. E.g.
required parameters are missing.

fatal

7 OCF_NOT_RUNNING The resource is safely stopped. The cluster
will not attempt to stop a resource that returns
this for any action.

N/A

8 OCF_RUNNING_MASTER The resource is running in master mode. soft

9 OCF_FAILED_MASTER The resource is in master mode but has failed.
The resource will be demoted, stopped and
then started (and possibly promoted) again.

soft

other N/A Custom error code. soft

Exceptions to the recovery handling described above:

• Probes (non-recurring monitor actions) that find a resource active (or in master mode) will not result
in recovery action unless it is also found active elsewhere.

• The recovery action taken when a resource is found active more than once is determined by the
resource’s multiple-active property (see Section 5.4, “Resource Options”).

• Recurring actions that return OCF_ERR_UNIMPLEMENTED do not cause any type of recovery.

148

149

Appendix C. Installing

Table of Contents
C.1. Installing the Software .. 149
C.2. Enabling Pacemaker ... 149

C.2.1. Enabling Pacemaker For Corosync 2.x ... 149
C.2.2. Enabling Pacemaker For Corosync 1.x ... 150
C.2.3. Enabling Pacemaker For Heartbeat .. 151

C.1. Installing the Software
Most major Linux distributions have pacemaker packages in their standard package repositories, or
the software can be built from source code. See the Install wiki page1 for details.

See Which Messaging Layer Should I Choose? for information about choosing a messaging layer.

C.2. Enabling Pacemaker

C.2.1. Enabling Pacemaker For Corosync 2.x
High-level cluster management tools are available that can configure corosync for you. This document
focuses on the lower-level details if you want to configure corosync yourself.

Corosync configuration is normally located in /etc/corosync/corosync.conf.

Example C.1. Corosync 2.x configuration file for two nodes myhost1 and myhost2

totem {
version: 2
secauth: off
cluster_name: mycluster
transport: udpu
}

nodelist {
 node {
 ring0_addr: myhost1
 nodeid: 1
 }
 node {
 ring0_addr: myhost2
 nodeid: 2
 }
}

quorum {
provider: corosync_votequorum
two_node: 1
}

logging {
to_syslog: yes

1 http://clusterlabs.org/wiki/Install

http://clusterlabs.org/wiki/Install
http://clusterlabs.org/wiki/Install

Appendix C. Installing

150

}

Example C.2. Corosync 2.x configuration file for three nodes myhost1, myhost2 and myhost3

totem {
version: 2
secauth: off
cluster_name: mycluster
transport: udpu
}

nodelist {
 node {
 ring0_addr: myhost1
 nodeid: 1
 }
 node {
 ring0_addr: myhost2
 nodeid: 2
 }
 node {
 ring0_addr: myhost3
 nodeid: 3
 }
}

quorum {
provider: corosync_votequorum

}

logging {
to_syslog: yes
}

In the above examples, the totem section defines what protocol version and options (including
encryption) to use, 2 and gives the cluster a unique name (mycluster in these examples).

The node section lists the nodes in this cluster. (See Section 4.2, “Where Pacemaker Gets the Node
Name” for how this affects pacemaker.)

The quorum section defines how the cluster uses quorum. The important thing is that two-node
clusters must be handled specially, so two_node: 1 must be defined for two-node clusters (and only
for two-node clusters).

The logging section should be self-explanatory.

C.2.2. Enabling Pacemaker For Corosync 1.x

Example C.3. Corosync 1.x configuration file for a cluster with all nodes on the 192.0.2.0/24
network

 totem {
 version: 2

2 Please consult the Corosync website (http://www.corosync.org/) and documentation for details on enabling encryption and
peer authentication for the cluster.

http://www.corosync.org/

Enabling Pacemaker For Heartbeat

151

 secauth: off
 threads: 0
 interface {
 ringnumber: 0
 bindnetaddr: 192.0.2.0
 mcastaddr: 239.255.1.1
 mcastport: 1234
 }
 }
 logging {
 fileline: off
 to_syslog: yes
 syslog_facility: daemon
 }
 amf {
 mode: disabled
 }

With corosync 1.x, the totem section contains the protocol version and options as with 2.x. However,
nodes are also listed here, in the interface section. The bindnetaddr option is usually the
network address, thus allowing the same configuration file to be used on all nodes. IPv4 or IPv6
addresses can be used with corosync.

The amf section refers to the Availability Management Framework and is not covered in this
document.

The above corosync configuration is enough for corosync to operate by itself, but corosync 1.x
additionally needs to be told when it is being used in conjunction with Pacemaker. This can be
accomplished in one of two ways:

• Via the CMAN software provided with Red Hat Enterprise Linux 6 and its derivatives

• Via the pacemaker corosync plugin

To use CMAN, consult its documentation.

To use the pacemaker corosync plugin, add the following fragment to the corosync configuration and
restart the cluster.

Example C.4. Corosync 1._x_configuration fragment to enable Pacemaker plugin

aisexec {
 user: root
 group: root
}
service {
 name: pacemaker
 ver: 0
}

The cluster needs to be run as root so that its child processes (the lrmd in particular) have sufficient
privileges to perform the actions requested of it. After all, a cluster manager that can’t add an IP
address or start apache is of little use.

The second directive is the one that actually instructs the cluster to run Pacemaker.

C.2.3. Enabling Pacemaker For Heartbeat
See the heartbeat documentation for how to set up a ha.cf configuration file.

Appendix C. Installing

152

To enable the use of pacemaker with heartbeat, add the following to a functional ha.cf configuration
file and restart Heartbeat:

Example C.5. Heartbeat configuration fragment to enable Pacemaker

crm respawn

153

Appendix D. Upgrading

Table of Contents
D.1. Upgrading Cluster Software .. 153

D.1.1. Complete Cluster Shutdown ... 153
D.1.2. Rolling (node by node) ... 154
D.1.3. Detach and Reattach ... 155

D.2. Upgrading the Configuration .. 156
D.3. What Changed in 1.0 .. 158

D.3.1. New .. 158
D.3.2. Changed .. 159
D.3.3. Removed ... 160

D.1. Upgrading Cluster Software
There are three approaches to upgrading a cluster, each with advantages and disadvantages.

Table D.1. Upgrade Methods

Method Available
between
all
versions

Can be
used with
Pacemaker
Remote
nodes

Service
outage
during
upgrade

Service
recovery
during
upgrade

Exercises
failover
logic

Allows
change of
messaging
layer 1

Complete
cluster
shutdown

yes yes always N/A no yes

Rolling
(node by
node)

no yes always 2 yes yes no

Detach
and
reattach

yes no only due to
failure

no no yes

1 For example, switching from Heartbeat to Corosync.
2 Any active resources will be moved off the node being upgraded, so there will be at least a brief outage unless all resources
can be migrated "live".

D.1.1. Complete Cluster Shutdown
In this scenario, one shuts down all cluster nodes and resources, then upgrades all the nodes before
restarting the cluster.

1. On each node:

a. Shutdown the cluster software (pacemaker and the messaging layer).

b. Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/
or the underlying operating system.

c. Check the configuration with the crm_verify tool.

Appendix D. Upgrading

154

2. On each node:

a. Start the cluster software. The messaging layer can be either Corosync or Heartbeat and does
not need to be the same one before the upgrade.

One variation of this approach is to build a new cluster on new hosts. This allows the new version
to be tested beforehand, and minimizes downtime by having the new nodes ready to be placed in
production as soon as the old nodes are shut down.

D.1.2. Rolling (node by node)
In this scenario, each node is removed from the cluster, upgraded, and then brought back online, until
all nodes are running the newest version.

If you plan to upgrade other cluster software — such as the messaging layer — at the same time,
consult that software’s documentation for its compatibility with a rolling upgrade.

Pacemaker has three version numbers that affect rolling upgrades:

• Pacemaker release version: Rolling upgrades are possible as long as the major version number
(the x in x.y.z) stays the same. For example, a rolling upgrade may be done from 1.0.8 to 1.1.15, but
not from 0.6.7 to 1.0.0.

• CRM feature set: This version number applies to the communication between full cluster nodes.

It increases when a cluster node running the older version would have problems if the cluster’s
Designated Controller (DC) has the newer version. To avoid these problems, Pacemaker ensures
that the longest-running node is the DC, and that nodes with an older feature set cannot join the
cluster.

Therefore, if the CRM feature set is changing in the Pacemaker version you are upgrading to, you
should run a mixed-version cluster only during a small rolling upgrade window. If one of the older
nodes drops out of the cluster for any reason, it will not be able to rejoin until it is upgraded.

• LRMD protocol version: This version number applies to communication between a Pacemaker
Remote node and the cluster. It increases when an older cluster node would have problems hosting
the connection to a newer Pacemaker Remote node. To avoid these problems, Pacemaker Remote
nodes will accept connections only from cluster nodes with the same or newer LRMD protocol
version.

For rolling upgrades, this means that all cluster nodes should be upgraded before upgrading any
Pacemaker Remote nodes.

Unlike with CRM feature set differences between full cluster nodes, mixed LRMD protocol versions
between Pacemaker Remote nodes and full cluster nodes are fine, as long as the Pacemaker
Remote nodes have the older version. This can be useful, for example, to host a legacy application
in an older operating system version used as a Pacemaker Remote node.

See the ClusterLabs wiki’s Release Calendar1 to figure out whether the CRM feature set and/or LRMD
protocol version changed between the the Pacemaker release versions in your rolling upgrade.

1 http://clusterlabs.org/wiki/ReleaseCalendar

http://clusterlabs.org/wiki/ReleaseCalendar
http://clusterlabs.org/wiki/ReleaseCalendar

Detach and Reattach

155

Warning

The interpretation of the LRMD protocol version changed in Pacemaker 1.1.15. If you are
planning a rolling upgrade from an earlier Pacemaker version to Pacemaker 1.1.15 or later
involving Pacemaker Remote nodes, you will need to take special precautions to avoid problems.
See Upgrading to Pacemaker 1.1.15 or later from an earlier version2 on the ClusterLabs wiki.

To perform a rolling upgrade, on each node in turn:

1. Put the node into standby mode, and wait for any active resources to be moved cleanly to another
node. (This step is optional, but allows you to deal with any resource issues before the upgrade.)

2. Shutdown the cluster software (pacemaker and the messaging layer) on the node.

3. Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or
the underlying operating system.

4. If this is the first node to be upgraded, check the configuration with the crm_verify tool.

5. Start the messaging layer. This must be the same messaging layer (Corosync or Heartbeat) that
the rest of the cluster is using.

Note

Rolling upgrades were not always possible with older heartbeat and pacemaker versions. Rolling
upgrades that cross compatibility boundaries listed in the following table must be performed in
multiple steps.

Table D.2. Version Compatibility Table

Version being Installed Oldest Compatible Version

Pacemaker 1.x.y Pacemaker 1.0.0

Pacemaker 0.7.x Pacemaker 0.6 or Heartbeat 2.1.3

Pacemaker 0.6.x Heartbeat 2.0.8

Heartbeat 2.1.3 (or less) Heartbeat 2.0.4

Heartbeat 2.0.4 (or less) Heartbeat 2.0.0

Heartbeat 2.0.0 None. Use an alternate upgrade strategy.

D.1.3. Detach and Reattach
The reattach method is a variant of a complete cluster shutdown, where the resources are left active
and get re-detected when the cluster is restarted.

This method may not be used if the cluster contains any Pacemaker Remote nodes.

2 http://clusterlabs.org/wiki/Upgrading_to_Pacemaker_1.1.15_or_later_from_an_earlier_version

http://clusterlabs.org/wiki/Upgrading_to_Pacemaker_1.1.15_or_later_from_an_earlier_version
http://clusterlabs.org/wiki/Upgrading_to_Pacemaker_1.1.15_or_later_from_an_earlier_version

Appendix D. Upgrading

156

1. Tell the cluster to stop managing services. This is required to allow the services to remain active
after the cluster shuts down.

crm_attribute --name maintenance-mode --update true

2. On each node, shutdown the cluster software (pacemaker and the messaging layer), and upgrade
the Pacemaker software. This may also include upgrading the messaging layer. While the
underlying operating system may be upgraded at the same time, that will be more likely to cause
outages in the detached services (certainly, if a reboot is required).

3. Check the configuration with the crm_verify tool.

4. On each node, start the cluster software. The messaging layer can be either Corosync or
Heartbeat and does not need to be the same one as before the upgrade.

5. Verify that the cluster re-detected all resources correctly.

6. Allow the cluster to resume managing resources again:

crm_attribute --name maintenance-mode --delete

Note

Support for maintenance mode was added in Pacemaker 1.0.0. If you are upgrading from an
earlier version, you can detach by setting is-managed to false for all resources.

D.2. Upgrading the Configuration

Pacemaker’s configuration — the Configuration Information Base (CIB) — has its own XML schema
version, independent of the Pacemaker software version.

After cluster software is upgraded, the cluster will continue to use the older schema version that it was
previously using. This can be useful, for example, when administrators have written tools that modify
the configuration, and are based on the older syntax.

However, when using an older syntax, new features may be unavailable, and there is a performance
impact, since the cluster must do a non-persistent configuration upgrade before each transition. So
while using the old syntax is possible, it is not advisable to continue using it indefinitely.

Even if you wish to continue using the old syntax, it is a good idea to follow the upgrade procedure
outlined below, except for the last step, to ensure that the new software has no problems with your
existing configuration (since it will perform much the same task internally).

If you are brave, it is sufficient simply to run cibadmin --upgrade.

A more cautious approach would proceed like this:

1. Create a shadow copy of the configuration. The later commands will automatically operate on this
copy, rather than the live configuration.

crm_shadow --create shadow

Upgrading the Configuration

157

2. Verify the configuration is valid with the new software (which may be stricter about syntax
mistakes, or may have dropped support for deprecated features):

crm_verify --live-check

3. Fix any errors or warnings.

4. Perform the upgrade:

cibadmin --upgrade

5. If this step fails, there are three main possibilities:

a. The configuration was not valid to start with (did you do steps 2 and 3?).

b. The transformation failed - report a bug3 or email the project4.

c. The transformation was successful but produced an invalid result.

If the result of the transformation is invalid, you may see a number of errors from the validation
library. If these are not helpful, visit the Validation FAQ wiki page5 and/or try the manual
upgrade procedure described below.

6. Check the changes:

crm_shadow --diff

If at this point there is anything about the upgrade that you wish to fine-tune (for example, to
change some of the automatic IDs), now is the time to do so:

crm_shadow --edit

This will open the configuration in your favorite editor (whichever is specified by the standard
$EDITOR environment variable).

7. Preview how the cluster will react:

crm_simulate --live-check --save-dotfile shadow.dot -S
graphviz shadow.dot

Verify that either no resource actions will occur or that you are happy with any that are
scheduled. If the output contains actions you do not expect (possibly due to changes to the score
calculations), you may need to make further manual changes. See Section 2.5, “Testing Your
Configuration Changes” for further details on how to interpret the output of crm_simulate and
graphviz.

8. Upload the changes:

3 http://bugs.clusterlabs.org/
4 mailto:users@clusterlabs.org?subject=Transformation%20failed%20during%20upgrade
5 http://clusterlabs.org/wiki/Validation_FAQ

http://bugs.clusterlabs.org/
mailto:users@clusterlabs.org?subject=Transformation%20failed%20during%20upgrade
http://clusterlabs.org/wiki/Validation_FAQ
http://bugs.clusterlabs.org/
mailto:users@clusterlabs.org?subject=Transformation%20failed%20during%20upgrade
http://clusterlabs.org/wiki/Validation_FAQ

Appendix D. Upgrading

158

crm_shadow --commit shadow --force

In the unlikely event this step fails, please report a bug.

Note

 It is also possible to perform the configuration upgrade steps manually:

1. Locate the upgrade*.xsl conversion scripts provided with the source code. These will
often be installed in a location such as /usr/share/pacemaker, or may be obtained from
the source repository6.

2. Run the conversion scripts that apply to your older version, for example:

xsltproc /path/to/upgrade06.xsl config06.xml > config10.xml

3. Locate the pacemaker.rng script (from the same location as the xsl files).

4. Check the XML validity:

xmllint --relaxng /path/to/pacemaker.rng config10.xml

The advantage of this method is that it can be performed without the cluster running, and any
validation errors are often more informative.

D.3. What Changed in 1.0

D.3.1. New
• Failure timeouts. See Section 9.3, “Handling Resource Failure”

• New section for resource and operation defaults. See Section 5.4.2, “Setting Global Defaults for
Resource Meta-Attributes” and Section 5.5.3, “Setting Global Defaults for Operations”

• Tool for making offline configuration changes. See Section 2.4, “Making Configuration Changes in a
Sandbox”

• Rules, instance_attributes, meta_attributes and sets of operations can be defined
once and referenced in multiple places. See Section 11.2, “Reusing Rules, Options and Sets of
Operations”

• The CIB now accepts XPath-based create/modify/delete operations. See the cibadmin help text.

• Multi-dimensional colocation and ordering constraints. See Section 6.6, “Ordering Sets of
Resources” and Section 6.7, “Colocating Sets of Resources”

6 https://github.com/ClusterLabs/pacemaker/tree/master/xml

https://github.com/ClusterLabs/pacemaker/tree/master/xml
https://github.com/ClusterLabs/pacemaker/tree/master/xml

Changed

159

• The ability to connect to the CIB from non-cluster machines. See Section 9.1, “Connecting from a
Remote Machine”

• Allow recurring actions to be triggered at known times. See Section 9.2, “Specifying When Recurring
Actions are Performed”

D.3.2. Changed
• Syntax

• All resource and cluster options now use dashes (-) instead of underscores (_)

• master_slave was renamed to master

• The attributes container tag was removed

• The operation field pre-req has been renamed requires

• All operations must have an interval, start/stop must have it set to zero

• The stonith-enabled option now defaults to true.

• The cluster will refuse to start resources if stonith-enabled is true (or unset) and no STONITH
resources have been defined

• The attributes of colocation and ordering constraints were renamed for clarity. See Section 6.3,
“Specifying the Order in which Resources Should Start/Stop” and Section 6.4, “Placing Resources
Relative to other Resources”

• resource-failure-stickiness has been replaced by migration-threshold. See
Section 9.3, “Handling Resource Failure”

• The parameters for command-line tools have been made consistent

• Switched to RelaxNG schema validation and libxml2 parser

• id fields are now XML IDs which have the following limitations:

• id’s cannot contain colons (:)

• id’s cannot begin with a number

• id’s must be globally unique (not just unique for that tag)

• Some fields (such as those in constraints that refer to resources) are IDREFs.

This means that they must reference existing resources or objects in order for the configuration to
be valid. Removing an object which is referenced elsewhere will therefore fail.

• The CIB representation, from which a MD5 digest is calculated to verify CIBs on the nodes, has
changed.

This means that every CIB update will require a full refresh on any upgraded nodes until the
cluster is fully upgraded to 1.0. This will result in significant performance degradation and it
is therefore highly inadvisable to run a mixed 1.0/0.6 cluster for any longer than absolutely
necessary.

• Ping node information no longer needs to be added to ha.cf.

Appendix D. Upgrading

160

Simply include the lists of hosts in your ping resource(s).

D.3.3. Removed
• Syntax

• It is no longer possible to set resource meta options as top-level attributes. Use meta attributes
instead.

• Resource and operation defaults are no longer read from crm_config. See Section 5.4.2,
“Setting Global Defaults for Resource Meta-Attributes” and Section 5.5.3, “Setting Global Defaults
for Operations” instead.

161

Appendix E. Init Script LSB Compliance
The relevant part of the LSB specifications1 includes a description of all the return codes listed here.

Assuming some_service is configured correctly and currently inactive, the following sequence will
help you determine if it is LSB-compatible:

1. Start (stopped):

/etc/init.d/some_service start ; echo "result: $?"

a. Did the service start?

b. Did the command print result: 0 (in addition to its usual output)?

2. Status (running):

/etc/init.d/some_service status ; echo "result: $?"

a. Did the script accept the command?

b. Did the script indicate the service was running?

c. Did the command print result: 0 (in addition to its usual output)?

3. Start (running):

/etc/init.d/some_service start ; echo "result: $?"

a. Is the service still running?

b. Did the command print result: 0 (in addition to its usual output)?

4. Stop (running):

/etc/init.d/some_service stop ; echo "result: $?"

a. Was the service stopped?

b. Did the command print result: 0 (in addition to its usual output)?

5. Status (stopped):

/etc/init.d/some_service status ; echo "result: $?"

a. Did the script accept the command?

b. Did the script indicate the service was not running?

c. Did the command print result: 3 (in addition to its usual output)?

6. Stop (stopped):

1 http://refspecs.linuxfoundation.org/lsb.shtml

http://refspecs.linuxfoundation.org/lsb.shtml
http://refspecs.linuxfoundation.org/lsb.shtml

Appendix E. Init Script LSB Compliance

162

/etc/init.d/some_service stop ; echo "result: $?"

a. Is the service still stopped?

b. Did the command print result: 0 (in addition to its usual output)?

7. Status (failed):

a. This step is not readily testable and relies on manual inspection of the script.

The script can use one of the error codes (other than 3) listed in the LSB spec to indicate that
it is active but failed. This tells the cluster that before moving the resource to another node, it
needs to stop it on the existing one first.

If the answer to any of the above questions is no, then the script is not LSB-compliant. Your options
are then to either fix the script or write an OCF agent based on the existing script.

163

Appendix F. Sample Configurations

Table of Contents
F.1. Empty ... 163
F.2. Simple .. 163
F.3. Advanced Configuration .. 164

F.1. Empty

Example F.1. An Empty Configuration

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0"
 num_updates="0">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
</cib>

F.2. Simple

Example F.2. A simple configuration with two nodes, some cluster options and a resource

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0"
 num_updates="0">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="option-1" name="symmetric-cluster" value="true"/>
 <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
 <nvpair id="option-3" name="stonith-enabled" value="0"/>
 </cluster_property_set>
 </crm_config>
 <nodes>
 <node id="xxx" uname="c001n01" type="normal"/>
 <node id="yyy" uname="c001n02" type="normal"/>
 </nodes>
 <resources>
 <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
 <operations>
 <op id="myAddr-monitor" name="monitor" interval="300s"/>
 </operations>
 <instance_attributes id="myAddr-params">
 <nvpair id="myAddr-ip" name="ip" value="192.0.2.10"/>
 </instance_attributes>
 </primitive>
 </resources>
 <constraints>
 <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/>
 </constraints>
 <rsc_defaults>
 <meta_attributes id="rsc_defaults-options">

Appendix F. Sample Configurations

164

 <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
 <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
 </meta_attributes>
 </rsc_defaults>
 <op_defaults>
 <meta_attributes id="op_defaults-options">
 <nvpair id="op-default-1" name="timeout" value="30s"/>
 </meta_attributes>
 </op_defaults>
 </configuration>
 <status/>
</cib>

In the above example, we have one resource (an IP address) that we check every five minutes and
will run on host c001n01 until either the resource fails 10 times or the host shuts down.

F.3. Advanced Configuration

Example F.3. An advanced configuration with groups, clones and STONITH

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0"
 num_updates="0">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="option-1" name="symmetric-cluster" value="true"/>
 <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
 <nvpair id="option-3" name="stonith-enabled" value="true"/>
 </cluster_property_set>
 </crm_config>
 <nodes>
 <node id="xxx" uname="c001n01" type="normal"/>
 <node id="yyy" uname="c001n02" type="normal"/>
 <node id="zzz" uname="c001n03" type="normal"/>
 </nodes>
 <resources>
 <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
 <operations>
 <op id="myAddr-monitor" name="monitor" interval="300s"/>
 </operations>
 <instance_attributes id="myAddr-attrs">
 <nvpair id="myAddr-attr-1" name="ip" value="192.0.2.10"/>
 </instance_attributes>
 </primitive>
 <group id="myGroup">
 <primitive id="database" class="lsb" type="oracle">
 <operations>
 <op id="database-monitor" name="monitor" interval="300s"/>
 </operations>
 </primitive>
 <primitive id="webserver" class="lsb" type="apache">
 <operations>
 <op id="webserver-monitor" name="monitor" interval="300s"/>
 </operations>
 </primitive>
 </group>
 <clone id="STONITH">
 <meta_attributes id="stonith-options">
 <nvpair id="stonith-option-1" name="globally-unique" value="false"/>
 </meta_attributes>
 <primitive id="stonithclone" class="stonith" type="external/ssh">
 <operations>

Advanced Configuration

165

 <op id="stonith-op-mon" name="monitor" interval="5s"/>
 </operations>
 <instance_attributes id="stonith-attrs">
 <nvpair id="stonith-attr-1" name="hostlist" value="c001n01,c001n02"/>
 </instance_attributes>
 </primitive>
 </clone>
 </resources>
 <constraints>
 <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01"
 score="INFINITY"/>
 <rsc_colocation id="group-with-ip" rsc="myGroup" with-rsc="myAddr"
 score="INFINITY"/>
 </constraints>
 <op_defaults>
 <meta_attributes id="op_defaults-options">
 <nvpair id="op-default-1" name="timeout" value="30s"/>
 </meta_attributes>
 </op_defaults>
 <rsc_defaults>
 <meta_attributes id="rsc_defaults-options">
 <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
 <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
 </meta_attributes>
 </rsc_defaults>
 </configuration>
 <status/>
</cib>

166

167

Appendix G. Further Reading
• Project Website: http://www.clusterlabs.org/
• Project Documentation: http://www.clusterlabs.org/wiki/Documentation
• SUSE High Availibility Guide: http://www.suse.com/documentation/sle_ha/book_sleha/data/

book_sleha.html
• Heartbeat configuration: http://www.linux-ha.org/
• Corosync Configuration: http://www.corosync.org/

http://www.clusterlabs.org/
http://www.clusterlabs.org/wiki/Documentation
http://www.suse.com/documentation/sle_ha/book_sleha/data/book_sleha.html
http://www.suse.com/documentation/sle_ha/book_sleha/data/book_sleha.html
http://www.linux-ha.org/
http://www.corosync.org/

168

169

Appendix H. Revision History
Revision 1-0 19 Oct 2009 Andrew Beekhof andrew@beekhof.net

Import from Pages.app

Revision 2-0 26 Oct 2009 Andrew Beekhof andrew@beekhof.net
Cleanup and reformatting of docbook xml complete

Revision 3-0 Tue Nov 12 2009 Andrew Beekhof andrew@beekhof.net
Split book into chapters and pass validation
Re-organize book for use with Publican1

Revision 4-0 Mon Oct 8 2012 Andrew Beekhof andrew@beekhof.net
Converted to asciidoc2 (which is converted to docbook for use with Publican3)

Revision 5-0 Mon Feb 23 2015 Ken Gaillot kgaillot@redhat.com
Update for clarity, stylistic consistency and current command-line syntax

Revision 6-0 Tue Dec 8 2015 Ken Gaillot kgaillot@redhat.com
Update for Pacemaker 1.1.14

Revision 7-0 Tue May 3 2016 Ken Gaillot kgaillot@redhat.com
Update for Pacemaker 1.1.15

Revision 7-1 Fri Oct 28 2016 Ken Gaillot kgaillot@redhat.com
Overhaul upgrade documentation, and document node health strategies

Revision 8-0 Tue Oct 25 2016 Ken Gaillot kgaillot@redhat.com
Update for Pacemaker 1.1.16

Revision 9-0 Tue Jul 11 2017 Ken Gaillot kgaillot@redhat.com
Update for Pacemaker 1.1.17

Revision 10-0 Fri Oct 6 2017 Ken Gaillot kgaillot@redhat.com

1 https://fedorahosted.org/publican/
2 http://www.methods.co.nz/asciidoc
3 https://fedorahosted.org/publican/

mailto:andrew@beekhof.net
mailto:andrew@beekhof.net
mailto:andrew@beekhof.net
https://fedorahosted.org/publican/
mailto:andrew@beekhof.net
http://www.methods.co.nz/asciidoc
https://fedorahosted.org/publican/
mailto:kgaillot@redhat.com
mailto:kgaillot@redhat.com
mailto:kgaillot@redhat.com
mailto:kgaillot@redhat.com
mailto:kgaillot@redhat.com
mailto:kgaillot@redhat.com
mailto:kgaillot@redhat.com
https://fedorahosted.org/publican/
http://www.methods.co.nz/asciidoc
https://fedorahosted.org/publican/

Appendix H. Revision History

170

Update for Pacemaker 1.1.18

171

Index
Symbols
0

OCF_SUCCESS, 146
1

OCF_ERR_GENERIC, 147
2

OCF_ERR_ARGS, 147
3

OCF_ERR_UNIMPLEMENTED, 147
4

OCF_ERR_PERM, 147
5

OCF_ERR_INSTALLED, 147
6

OCF_ERR_CONFIGURED, 147
7

OCF_NOT_RUNNING, 147
8

OCF_RUNNING_MASTER, 147
9

OCF_FAILED_MASTER, 147

A
Action, 36

demote, 146
meta-data, 145
monitor, 145
notify, 146
promote, 146
Property

enabled, 37, 37
id, 36
interval, 36
name, 36
on-fail, 37
role, 37
timeout, 36

start, 145
Status

call-id, 133
crm-debug-origin, 134
crm_feature_set, 134
exec-time, 133
id, 133
interval, 133
last-rc-change, 133
last-run, 133
op-digest, 134
op-status, 133
operation, 133
queue-time, 133

rc-code, 133
transition-key, 134
transition-magic, 134

stop, 145
validate-all, 145

action, 48, 93
Ordering Constraints, 93
Resource Sets, 48

Action Property, 36, 36, 36, 36, 37, 37, 37, 37
Action Status, 133, 133, 133, 133, 133, 133, 133,
133, 133, 133, 134, 134, 134, 134, 134
active_resource, 88, 94

Notification Environment Variable, 88, 94
active_uname, 88, 95

Notification Environment Variable, 88, 95
Add Cluster Node, 24, 25

Corosync, 24
Heartbeat, 25

admin_epoch, 17
Cluster Option, 17

Alert
Option

timeout, 56
timestamp-format, 56

Alerts, 55
Asymmetrical Opt-In, 43
Asymmetrical Opt-In Clusters, 43
attribute, 24, 62

Constraint Expression, 62
Attribute Expression, 62

attribute, 62
id, 62
operation, 62
type, 62
value, 62, 62

attribute_name, 59
attribute_value, 59

B
batch-limit, 19

Cluster Option, 19
boolean-op, 61

Constraint Rule, 61
bundle, 98, 98, 98, 98, 99, 99

network, 100
port-mapping, 101

Property
description, 99
id, 99

storage
storage-mapping, 102

Index

172

C
call-id, 133

Action Status, 133
Changing cluster stack, 153
Choosing Between Heartbeat and Corosync, 143
cib-last-written, 17

Cluster Property, 17
CIB_encrypted, 71
CIB_passwd, 71
CIB_port, 71
CIB_server, 71
CIB_user, 71
class, 27, 31

Resource, 31
Clone

Option
clone-max, 86
clone-min, 86
clone-node-max, 86
globally-unique, 86
interleave, 86
notify, 86
ordered, 86

Property
id, 86

Clone Option, 86, 86, 86, 86, 86, 86, 86
Clone Property, 86
Clone Resources, 85
clone-max, 86

Clone Option, 86
clone-min, 86

Clone Option, 86
clone-node-max, 86

Clone Option, 86
Clones, 85, 87
Cluster, 17

Choosing Between Heartbeat and Corosync,
143
Option

admin_epoch, 17
batch-limit, 19
cluster-delay, 20
cluster-ipc-limit, 20
cluster-recheck-interval, 20
concurrent-fencing, 20
Configuration Version, 17
crmd-finalization-timeout, 21
crmd-integration-timeout, 21
crmd-transition-delay, 21
dc-deadtime, 20
default-action-timeout, 21
default-resource-stickiness, 21
election-timeout, 21

enable-startup-probes, 19
epoch, 17
is-managed-default, 21
maintenance-mode, 19
migration-limit, 19
no-quorum-policy, 18
node-health-base, 21
node-health-green, 21
node-health-red, 21
node-health-strategy, 20
node-health-yellow, 21
num_updates, 17
pe-error-series-max, 20
pe-input-series-max, 20
pe-warn-series-max, 20
placement-strategy, 20
remove-after-stop, 21
shutdown-escalation, 21
start-failure-is-fatal, 19
startup-fencing, 21
stonith-action, 19
stonith-enabled, 19
stonith-max-attempts, 20
stonith-timeout, 19
stop-all-resources, 19
stop-orphan-actions, 19
stop-orphan-resources, 19
symmetric-cluster, 19
validate-with, 17

Property
cib-last-written, 17
cluster-infrastructure, 18
dc-uuid, 17
dc-version, 18
expected-quorum-votes, 18
have-quorum, 17

Querying Options, 21
Remote administration, 71
Remote connection, 71
Setting Options, 21
Setting Options with Rules, 68
switching between stacks, 153

Cluster Option, 17, 17, 17, 17, 18, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21, 21, 21
Cluster Property, 17, 17, 17, 18, 18, 18
Cluster Stack

Corosync, 143
Heartbeat, 143

Cluster Type
Asymmetrical Opt-In, 43
Symmetrical Opt-Out, 44

cluster-delay, 20

173

Cluster Option, 20
cluster-infrastructure, 18

Cluster Property, 18
cluster-ipc-limit, 20

Cluster Option, 20
cluster-recheck-interval, 20

Cluster Option, 20
Colocation, 46

id, 46
node-attribute, 47
rsc, 46
score, 47
with-rsc, 47

Colocation Constraints, 46, 46, 47, 47, 47
concurrent-fencing, 20

Cluster Option, 20
Configuration, 115, 156, 157

upgrade manually, 158
upgrading, 156
validate XML, 158
verify, 157

Configuration Version, 17
Cluster, 17

Constraint
Attribute Expression, 62

attribute, 62
id, 62
operation, 62
type, 62
value, 62, 62

Date Specification, 64
hours, 64
id, 64
monthdays, 64
months, 64
moon, 64
weekdays, 64
weeks, 64
weekyears, 64
yeardays, 64
years, 64

Date/Time Expression, 63
end, 63
operation, 63
start, 63

Duration, 64
Rule, 61

boolean-op, 61
id, 61
role, 61
score, 61
score-attribute, 61

Constraint Expression, 62, 62, 62, 62, 62, 62, 63,
63, 63

Constraint Rule, 61, 61, 61, 61, 61
Constraints, 41

Colocation, 46
id, 46
node-attribute, 47
rsc, 46
score, 47
with-rsc, 47

Location, 42
id, 42
node, 42
Resource Discovery, 43
rsc, 42
rsc-pattern, 42
score, 42

Ordering, 44
action, 93
first, 45
first-action, 45
id, 45
kind, 45
role, 92
rsc-role, 92
then, 45
then-action, 45
with-rsc-role, 92

Resource Sets
action, 48
id, 48
require-all, 48
role, 48
score, 49
sequential, 48

control-port, 101
network, 101

Controlling Cluster Options, 68
convert, 158
Corosync, 24, 25, 25, 143, 143

Add Cluster Node, 24
Remove Cluster Node, 25
Replace Cluster Node, 25

crm-debug-origin, 132, 134
Action Status, 134
Node Status, 132

crmd, 132
Node Status, 132

crmd-finalization-timeout, 21
Cluster Option, 21

crmd-integration-timeout, 21
Cluster Option, 21

crmd-transition-delay, 21
Cluster Option, 21

CRM_alert_
attribute_name, 59

Index

174

attribute_value, 59
desc, 59
interval, 59
kind, 58
node, 59
nodeid, 59
rc, 59
recipient, 58
rsc, 59
status, 59
target_rc, 59
task, 59
timestamp, 59
version, 58

CRM_alert_node_
sequence, 59

crm_feature_set, 134
Action Status, 134

custom, 81

D
dampen, 77

Ping Resource Option, 77
Date Specification, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64

hours, 64
id, 64
monthdays, 64
months, 64
moon, 64
weekdays, 64
weeks, 64
weekyears, 64
yeardays, 64
years, 64

Date/Time Expression, 63
end, 63
operation, 63
start, 63

dc-deadtime, 20
Cluster Option, 20

dc-uuid, 17
Cluster Property, 17

dc-version, 18
Cluster Property, 18

default-action-timeout, 21
Cluster Option, 21

default-resource-stickiness, 21
Cluster Option, 21

demote, 146
OCF Action, 146

demote_resource, 94
Notification Environment Variable, 94

demote_uname, 95

Notification Environment Variable, 95
desc, 59
description, 99

bundle, 99
Determine by Rules, 66
Determine Resource Location, 66
devices, 124

fencing-level, 124
Docker, 99, 99, 99, 99, 99, 99, 99

bundle, 98
Property

image, 99
masters, 99
network, 99
options, 99
replicas, 99
replicas-per-host, 99
run-command, 99

Duration, 64, 64

E
election-timeout, 21

Cluster Option, 21
enable-startup-probes, 19

Cluster Option, 19
enabled, 37, 37

Action Property, 37, 37
end, 63

Constraint Expression, 63
Environment Variable

CIB_encrypted, 71
CIB_passwd, 71
CIB_port, 71
CIB_server, 71
CIB_user, 71
CRM_alert_

attribute_name, 59
attribute_value, 59
desc, 59
interval, 59
kind, 58
node, 59
nodeid, 59
rc, 59
recipient, 58
rsc, 59
status, 59
target_rc, 59
task, 59
timestamp, 59
version, 58

CRM_alert_node_
sequence, 59

OCF_RESKEY_CRM_meta_notify_

175

active_resource, 88, 94
active_uname, 88, 95
demote_resource, 94
demote_uname, 95
inactive_resource, 88, 94
master_resource, 94
master_uname, 95
operation, 88, 94
promote_resource, 94
promote_uname, 95
slave_resource, 94
slave_uname, 95
start_resource, 88, 94
start_uname, 88, 94
stop_resource, 88, 94
stop_uname, 88, 95
type, 88, 94

epoch, 17
Cluster Option, 17

error
fatal, 146
hard, 146
soft, 146

exec-time, 133
Action Status, 133

expected, 132
Node Status, 132

expected-quorum-votes, 18
Cluster Property, 18

F
failure-timeout, 33

Resource Option, 33
fatal, 146

OCF error, 146
feedback

contact information for this manual, xix
Fencing, 116, 116, 116, 117, 117, 117, 117, 117,
117, 118, 118, 118, 118, 118, 118, 118, 118, 118,
119, 119, 119, 119, 119, 119, 119, 120

fencing-level
devices, 124
id, 124
index, 124
target, 124
target-attribute, 124, 124
target-pattern, 124

Property
pcmk_action_limit, 117
pcmk_delay_base, 117
pcmk_delay_max, 117
pcmk_host_argument, 117
pcmk_host_check, 117
pcmk_host_list, 117

pcmk_host_map, 116
pcmk_list_action, 118
pcmk_list_retries, 119
pcmk_list_timeout, 119
pcmk_monitor_action, 119
pcmk_monitor_retries, 119
pcmk_monitor_timeout, 119
pcmk_off_action, 118
pcmk_off_retries, 118
pcmk_off_timeout, 118
pcmk_reboot_action, 118
pcmk_reboot_retries, 118
pcmk_reboot_timeout, 118
pcmk_status_action, 119
pcmk_status_retries, 120
pcmk_status_timeout, 119
priority, 116
stonith-timeout, 116, 118, 118

fencing-level, 124, 124, 124, 124, 124, 124, 124
devices, 124
id, 124
index, 124
target, 124
target-attribute, 124, 124
target-pattern, 124

first, 45
Ordering Constraints, 45

first-action, 45
Ordering Constraints, 45

G
globally-unique, 86

Clone Option, 86
green, 80
Group Property

id, 84
Group Resource Property, 84
Group Resources, 83
Groups, 83, 85

H
ha, 132

Node Status, 132
hard, 146

OCF error, 146
have-quorum, 17

Cluster Property, 17
Heartbeat, 25, 26, 26, 143, 143

Add Cluster Node, 25
Remove Cluster Node, 26
Replace Cluster Node, 26

host-interface, 101
network, 101

Index

176

host-netmask, 101
network, 101

host_list, 77
Ping Resource Option, 77

hours, 64
Date Specification, 64

I
id, 31, 36, 42, 45, 46, 48, 61, 62, 64, 84, 86, 90,
99, 101, 102, 124, 131, 133

Action Property, 36
Action Status, 133
bundle, 99
Clone Property, 86
Colocation Constraints, 46
Constraint Expression, 62
Constraint Rule, 61
Date Specification, 64
fencing-level, 124
Group Resource Property, 84
Location Constraints, 42
Multi-State Property, 90
Node Status, 131
Ordering Constraints, 45
port-mapping, 101
Resource, 31
Resource Sets, 48
storage-mapping, 102

image, 99, 100
Docker, 99
rkt, 100

inactive_resource, 88, 94
Notification Environment Variable, 88, 94

index, 124
fencing-level, 124

interleave, 86
Clone Option, 86

internal-port, 101
port-mapping, 101

interval, 36, 59, 133
Action Property, 36
Action Status, 133

in_ccm, 132
Node Status, 132

ip-range-start, 100
network, 100

is-managed, 32
Resource Option, 32

is-managed-default, 21
Cluster Option, 21

J
join, 132

Node Status, 132

K
kind, 45, 58

Ordering Constraints, 45

L
last-rc-change, 133

Action Status, 133
last-run, 133

Action Status, 133
Linux Standard Base

Resources, 28
Location, 42

Determine by Rules, 66
id, 42
node, 42
Resource Discovery, 43
rsc, 42
rsc-pattern, 42
score, 42

Location Constraints, 42, 42, 42, 42, 42, 42, 43
Location Relative to other Resources, 46
LSB, 28

Resources, 28

M
maintenance-mode, 19

Cluster Option, 19
master-max, 90

Multi-State Option, 90
master-node-max, 90

Multi-State Option, 90
masters, 99, 100

Docker, 99
rkt, 100

master_resource, 94
Notification Environment Variable, 94

master_uname, 95
Notification Environment Variable, 95

Messaging Layers, 143
meta-data, 145

OCF Action, 145
migrate-on-red, 80
migration-limit, 19

Cluster Option, 19
migration-threshold, 33

Resource Option, 33
monitor, 145

OCF Action, 145
monthdays, 64

Date Specification, 64
months, 64

177

Date Specification, 64
moon, 64

Date Specification, 64
Moving, 74

Resources, 74
Multi-state, 90
Multi-State, 93

Option
master-max, 90
master-node-max, 90

Property
id, 90

Multi-State Option, 90, 90
Multi-State Property, 90
Multi-state Resources, 90
multiple-active, 33

Resource Option, 33
multiplier, 77

Ping Resource Option, 77

N
Nagios Plugins, 30

Resources, 30
name, 36

Action Property, 36
network, 99, 100, 100, 100, 101, 101, 101

Docker, 99
port-mapping, 101
Property

control-port, 101
host-interface, 101
host-netmask, 101
ip-range-start, 100

rkt, 100
no-quorum-policy, 18

Cluster Option, 18
Node

attribute, 24
Status, 131

crm-debug-origin, 132
crmd, 132
expected, 132
ha, 132
id, 131
in_ccm, 132
join, 132
uname, 131

node, 42, 59
Location Constraints, 42

Node health
custom, 81
green, 80
migrate-on-red, 80
none, 80

only-green, 80
progressive, 80
red, 80
score, 80
yellow, 80

Node Status, 131, 131, 132, 132, 132, 132, 132,
132
node-attribute, 47

Colocation Constraints, 47
node-health-base, 21

Cluster Option, 21
node-health-green, 21

Cluster Option, 21
node-health-red, 21

Cluster Option, 21
node-health-strategy, 20

Cluster Option, 20
node-health-yellow, 21

Cluster Option, 21
nodeid, 59
none, 80
Notification Environment Variable, 88, 88, 88, 88,
88, 88, 88, 88, 88, 94, 94, 94, 94, 94, 94, 94, 94,
94, 94, 94, 95, 95, 95, 95, 95, 95
notify, 86, 146

Clone Option, 86
OCF Action, 146

num_updates, 17
Cluster Option, 17

O
OCF, 28

Action
demote, 146
meta-data, 145
monitor, 145
notify, 146
promote, 146
start, 145
stop, 145
validate-all, 145

error
fatal, 146
hard, 146
soft, 146

Resources, 28
OCF Action, 145, 145, 145, 145, 145, 146, 146,
146
OCF error, 146, 146, 146
OCF Resource Agents, 145
ocf-tester, 146
OCF_ERR_ARGS, 147, 147
OCF_ERR_CONFIGURED, 147, 147
OCF_ERR_GENERIC, 147, 147

Index

178

OCF_ERR_INSTALLED, 147, 147
OCF_ERR_PERM, 147, 147
OCF_ERR_UNIMPLEMENTED, 147, 147
OCF_FAILED_MASTER, 94, 147, 147
OCF_NOT_RUNNING, 94, 147, 147
OCF_RESKEY_CRM_meta_notify_

active_resource, 88, 94
active_uname, 88, 95
demote_resource, 94
demote_uname, 95
inactive_resource, 88, 94
master_resource, 94
master_uname, 95
operation, 88, 94
promote_resource, 94
promote_uname, 95
slave_resource, 94
slave_uname, 95
start_resource, 88, 94
start_uname, 88, 94
stop_resource, 88, 94
stop_uname, 88, 95
type, 88, 94

OCF_RUNNING_MASTER, 94, 147, 147
OCF_SUCCESS, 94, 146, 146
on-fail, 37

Action Property, 37
only-green, 80
op-digest, 134

Action Status, 134
op-status, 133

Action Status, 133
Open Cluster Framework

Resources, 28
operation, 62, 63, 88, 94, 133

Action Status, 133
Constraint Expression, 62, 63
Notification Environment Variable, 88, 94

Operation History, 132
Option

admin_epoch, 17
batch-limit, 19
clone-max, 86
clone-min, 86
clone-node-max, 86
cluster-delay, 20
cluster-ipc-limit, 20
cluster-recheck-interval, 20
concurrent-fencing, 20
Configuration Version, 17
crmd-finalization-timeout, 21
crmd-integration-timeout, 21
crmd-transition-delay, 21
dampen, 77

dc-deadtime, 20
default-action-timeout, 21
default-resource-stickiness, 21
election-timeout, 21
enable-startup-probes, 19
epoch, 17
failure-timeout, 33
globally-unique, 86
host_list, 77
interleave, 86
is-managed, 32
is-managed-default, 21
maintenance-mode, 19
master-max, 90
master-node-max, 90
migration-limit, 19
migration-threshold, 33
multiple-active, 33
multiplier, 77
no-quorum-policy, 18
node-health-base, 21
node-health-green, 21
node-health-red, 21
node-health-strategy, 20
node-health-yellow, 21
notify, 86
num_updates, 17
ordered, 86
pe-error-series-max, 20
pe-input-series-max, 20
pe-warn-series-max, 20
placement-strategy, 20
priority, 32
remote-clear-port, 72
remote-tls-port, 72
remove-after-stop, 21
requires, 32
resource-stickiness, 32
shutdown-escalation, 21
start-failure-is-fatal, 19
startup-fencing, 21
stonith-action, 19
stonith-enabled, 19
stonith-max-attempts, 20
stonith-timeout, 19
stop-all-resources, 19
stop-orphan-actions, 19
stop-orphan-resources, 19
symmetric-cluster, 19
target-role, 32
timeout, 56
timestamp-format, 56
validate-with, 17

options, 99, 100, 102

179

Docker, 99
rkt, 100
storage-mapping, 102

ordered, 86
Clone Option, 86

Ordering, 44
action, 93
first, 45
first-action, 45
id, 45
kind, 45
role, 92
rsc-role, 92
then, 45
then-action, 45
with-rsc-role, 92

Ordering Constraints, 44, 45, 45, 45, 45, 45, 45,
45, 92, 92, 92, 93

symmetrical, 45
other, 147

P
Pacemaker, 143
pcmk_action_limit, 117

Fencing, 117
pcmk_delay_base, 117

Fencing, 117
pcmk_delay_max, 117

Fencing, 117
pcmk_host_argument, 117

Fencing, 117
pcmk_host_check, 117

Fencing, 117
pcmk_host_list, 117

Fencing, 117
pcmk_host_map, 116

Fencing, 116
pcmk_list_action, 118

Fencing, 118
pcmk_list_retries, 119

Fencing, 119
pcmk_list_timeout, 119

Fencing, 119
pcmk_monitor_action, 119

Fencing, 119
pcmk_monitor_retries, 119

Fencing, 119
pcmk_monitor_timeout, 119

Fencing, 119
pcmk_off_action, 118

Fencing, 118
pcmk_off_retries, 118

Fencing, 118
pcmk_off_timeout, 118

Fencing, 118
pcmk_reboot_action, 118

Fencing, 118
pcmk_reboot_retries, 118

Fencing, 118
pcmk_reboot_timeout, 118

Fencing, 118
pcmk_status_action, 119

Fencing, 119
pcmk_status_retries, 120

Fencing, 120
pcmk_status_timeout, 119

Fencing, 119
pe-error-series-max, 20

Cluster Option, 20
pe-input-series-max, 20

Cluster Option, 20
pe-warn-series-max, 20

Cluster Option, 20
Ping Resource

Option
dampen, 77
host_list, 77
multiplier, 77

Ping Resource Option, 77, 77, 77
placement-strategy, 20

Cluster Option, 20
port, 101

port-mapping, 101
port-mapping, 101, 101, 101, 101, 102

Property
id, 101
internal-port, 101
port, 101
range, 102

priority, 32, 116
Fencing, 116
Resource Option, 32

progressive, 80
promote, 146

OCF Action, 146
promote_resource, 94

Notification Environment Variable, 94
promote_uname, 95

Notification Environment Variable, 95
Property

cib-last-written, 17
class, 31
cluster-infrastructure, 18
control-port, 101
dc-uuid, 17
dc-version, 18
description, 99
enabled, 37, 37

Index

180

expected-quorum-votes, 18
have-quorum, 17
host-interface, 101
host-netmask, 101
id, 31, 36, 86, 90, 99, 101, 102
image, 99, 100
internal-port, 101
interval, 36
ip-range-start, 100
masters, 99, 100
name, 36
network, 99, 100
on-fail, 37
options, 99, 100, 102
pcmk_action_limit, 117
pcmk_delay_base, 117
pcmk_delay_max, 117
pcmk_host_argument, 117
pcmk_host_check, 117
pcmk_host_list, 117
pcmk_host_map, 116
pcmk_list_action, 118
pcmk_list_retries, 119
pcmk_list_timeout, 119
pcmk_monitor_action, 119
pcmk_monitor_retries, 119
pcmk_monitor_timeout, 119
pcmk_off_action, 118
pcmk_off_retries, 118
pcmk_off_timeout, 118
pcmk_reboot_action, 118
pcmk_reboot_retries, 118
pcmk_reboot_timeout, 118
pcmk_status_action, 119
pcmk_status_retries, 120
pcmk_status_timeout, 119
port, 101
priority, 116
provider, 31
range, 102
replicas, 99, 100
replicas-per-host, 99, 100
role, 37
run-command, 99, 100
source-dir, 102
source-dir-root, 102
stonith-timeout, 116, 118, 118
target-dir, 102
timeout, 36
type, 31

provider, 31
Resource, 31

Q
Querying

Cluster Option, 21
Querying Options, 21
queue-time, 133

Action Status, 133

R
range, 102

port-mapping, 102
rc, 59
rc-code, 133

Action Status, 133
reattach, 153
reattach upgrade, 153
recipient, 58
red, 80
Remote administration, 71
Remote connection, 71
Remote Connection

Option
remote-clear-port, 72
remote-tls-port, 72

Remote Connection Option, 72, 72
remote-clear-port, 72

Remote Connection Option, 72
remote-tls-port, 72

Remote Connection Option, 72
Remove Cluster Node, 25, 26

Corosync, 25
Heartbeat, 26

remove-after-stop, 21
Cluster Option, 21

Replace Cluster Node, 25, 26
Corosync, 25
Heartbeat, 26

replicas, 99, 100
Docker, 99
rkt, 100

replicas-per-host, 99, 100
Docker, 99
rkt, 100

require-all, 48
Resource Sets, 48

requires, 32
Resource Option, 32

Resource, 27, 31, 31, 31, 31
Action, 36
Alerts, 55
bundle, 98
class, 27
Clones, 85
Constraint

181

Attribute Expression, 62
Date Specification, 64
Date/Time Expression, 63
Duration, 64
Rule, 61

Constraints, 41
Colocation, 46
Location, 42
Ordering, 44

Group Property
id, 84

Groups, 83
Location

Determine by Rules, 66
Location Relative to other Resources, 46
LSB, 28
Moving, 74
Multi-state, 90
Nagios Plugins, 30
OCF, 28
Option

failure-timeout, 33
is-managed, 32
migration-threshold, 33
multiple-active, 33
priority, 32
requires, 32
resource-stickiness, 32
target-role, 32

Property
class, 31
id, 31
provider, 31
type, 31

Start Order, 44
STONITH, 30
System Services, 30
Systemd, 29
Upstart, 29

Resource Discovery, 43
Location Constraints, 43

Resource Option, 32, 32, 32, 32, 32, 33, 33, 33
Resource Sets, 48, 48, 48, 48, 48, 49

action, 48
id, 48
require-all, 48
role, 48
score, 49
sequential, 48

resource-stickiness, 32
Clones, 87
Groups, 85
Multi-State, 93
Resource Option, 32

Resources, 28, 28, 28, 28, 29, 29, 30, 30, 30, 74
Return Code

0
OCF_SUCCESS, 146

1
OCF_ERR_GENERIC, 147

2
OCF_ERR_ARGS, 147

3
OCF_ERR_UNIMPLEMENTED, 147

4
OCF_ERR_PERM, 147

5
OCF_ERR_INSTALLED, 147

6
OCF_ERR_CONFIGURED, 147

7
OCF_NOT_RUNNING, 147

8
OCF_RUNNING_MASTER, 147

9
OCF_FAILED_MASTER, 147

OCF_ERR_ARGS, 147
OCF_ERR_CONFIGURED, 147
OCF_ERR_GENERIC, 147
OCF_ERR_INSTALLED, 147
OCF_ERR_PERM, 147
OCF_ERR_UNIMPLEMENTED, 147
OCF_FAILED_MASTER, 94, 147
OCF_NOT_RUNNING, 94, 147
OCF_RUNNING_MASTER, 94, 147
OCF_SUCCESS, 94, 146
other, 147

rkt, 100, 100, 100, 100, 100, 100, 100
bundle, 98
Property

image, 100
masters, 100
network, 100
options, 100
replicas, 100
replicas-per-host, 100
run-command, 100

role, 37, 48, 61, 92
Action Property, 37
Constraint Rule, 61
Ordering Constraints, 92
Resource Sets, 48

rolling, 153
rolling upgrade, 153
rsc, 42, 46, 59

Colocation Constraints, 46
Location Constraints, 42

rsc-pattern, 42

Index

182

Location Constraints, 42
rsc-role, 92

Ordering Constraints, 92
Rule, 61

boolean-op, 61
Controlling Cluster Options, 68
Determine Resource Location, 66
id, 61
role, 61
score, 61
score-attribute, 61

run-command, 99, 100
Docker, 99
rkt, 100

S
score, 42, 47, 49, 61, 80

Colocation Constraints, 47
Constraint Rule, 61
Location Constraints, 42
Resource Sets, 49

score-attribute, 61
Constraint Rule, 61

sequence, 59
sequential, 48

Resource Sets, 48
Setting

Cluster Option, 21
Setting Options, 21
Setting Options with Rules, 68
shutdown, 153
shutdown upgrade, 153
shutdown-escalation, 21

Cluster Option, 21
slave_resource, 94

Notification Environment Variable, 94
slave_uname, 95

Notification Environment Variable, 95
soft, 146

OCF error, 146
source-dir, 102

storage-mapping, 102
source-dir-root, 102

storage-mapping, 102
start, 63, 145

Constraint Expression, 63
OCF Action, 145

Start Order, 44
start-failure-is-fatal, 19

Cluster Option, 19
startup-fencing, 21

Cluster Option, 21
start_resource, 88, 94

Notification Environment Variable, 88, 94

start_uname, 88, 94
Notification Environment Variable, 88, 94

status, 59
Status, 131

call-id, 133
crm-debug-origin, 132, 134
crmd, 132
crm_feature_set, 134
exec-time, 133
expected, 132
ha, 132
id, 131, 133
interval, 133
in_ccm, 132
join, 132
last-rc-change, 133
last-run, 133
op-digest, 134
op-status, 133
operation, 133
queue-time, 133
rc-code, 133
transition-key, 134
transition-magic, 134
uname, 131

Status of a Node, 131
STONITH, 30

Configuration, 115
Resources, 30

stonith-action, 19
Cluster Option, 19

stonith-enabled, 19
Cluster Option, 19

stonith-max-attempts, 20
Cluster Option, 20

stonith-timeout, 19, 116, 118, 118
Cluster Option, 19
Fencing, 116, 118, 118

stop, 145
OCF Action, 145

stop-all-resources, 19
Cluster Option, 19

stop-orphan-actions, 19
Cluster Option, 19

stop-orphan-resources, 19
Cluster Option, 19

stop_resource, 88, 94
Notification Environment Variable, 88, 94

stop_uname, 88, 95
Notification Environment Variable, 88, 95

storage
storage-mapping, 102

storage-mapping, 102, 102, 102, 102, 102, 102
Property

183

id, 102
options, 102
source-dir, 102
source-dir-root, 102
target-dir, 102

switching between stacks, 153
symmetric-cluster, 19

Cluster Option, 19
symmetrical, 45

Ordering Constraints, 45
Symmetrical Opt-Out, 44
Symmetrical Opt-Out Clusters, 44
System Service

Resources, 30
System Services, 30
Systemd, 29

Resources, 29

T
target, 124

fencing-level, 124
target-attribute, 124, 124

fencing-level, 124, 124
target-dir, 102

storage-mapping, 102
target-pattern, 124

fencing-level, 124
target-role, 32

Resource Option, 32
target_rc, 59
task, 59
then, 45

Ordering Constraints, 45
then-action, 45

Ordering Constraints, 45
Time Based Expressions, 63
timeout, 36, 56

Action Property, 36
timestamp, 59
timestamp-format, 56
transition-key, 134

Action Status, 134
transition-magic, 134

Action Status, 134
type, 31, 62, 88, 94

Constraint Expression, 62
Notification Environment Variable, 88, 94
Resource, 31

U
uname, 131

Node Status, 131
upgrade

Configuration, 156
reattach, 153
rolling, 153
shutdown, 153

upgrade manually, 158
upgrading, 156
Upstart, 29

Resources, 29

V
validate configuration, 158
validate XML, 158
validate-all, 145

OCF Action, 145
validate-with, 17

Cluster Option, 17
value, 62, 62

Constraint Expression, 62, 62
verify, 157

Configuration, 157
version, 58

W
weekdays, 64

Date Specification, 64
weeks, 64

Date Specification, 64
weekyears, 64

Date Specification, 64
with-rsc, 47

Colocation Constraints, 47
with-rsc-role, 92

Ordering Constraints, 92

X
XML

convert, 158

Y
yeardays, 64

Date Specification, 64
years, 64

Date Specification, 64
yellow, 80

184

	Configuration Explained
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Read-Me-First
	1.1. The Scope of this Document
	1.2. What Is Pacemaker?
	1.3. Pacemaker Architecture
	1.3.1. Internal Components

	1.4. Types of Pacemaker Clusters

	Chapter 2. Configuration Basics
	2.1. Configuration Layout
	2.2. The Current State of the Cluster
	2.3. How Should the Configuration be Updated?
	2.3.1. Editing the CIB Using XML
	2.3.2. Quickly Deleting Part of the Configuration
	2.3.3. Updating the Configuration Without Using XML

	2.4. Making Configuration Changes in a Sandbox
	2.5. Testing Your Configuration Changes
	2.5.1. Small Cluster Transition
	2.5.2. Complex Cluster Transition

	2.6. Do I Need to Update the Configuration on All Cluster Nodes?

	Chapter 3. Cluster-Wide Configuration
	3.1. CIB Properties
	3.1.1. Working with CIB Properties

	3.2. Cluster Options
	3.2.1. Querying and Setting Cluster Options
	3.2.2. When Options are Listed More Than Once

	Chapter 4. Cluster Nodes
	4.1. Defining a Cluster Node
	4.2. Where Pacemaker Gets the Node Name
	4.3. Node Attributes
	4.4. Managing Nodes in a Corosync-Based Cluster
	4.4.1. Adding a New Corosync Node
	4.4.2. Removing a Corosync Node
	4.4.3. Replacing a Corosync Node

	4.5. Managing Nodes in a Heartbeat-based Cluster
	4.5.1. Adding a New Heartbeat Node
	4.5.2. Removing a Heartbeat Node
	4.5.3. Replacing a Heartbeat Node

	Chapter 5. Cluster Resources
	5.1. What is a Cluster Resource?
	5.2. Resource Classes
	5.2.1. Open Cluster Framework
	5.2.2. Linux Standard Base
	5.2.3. Systemd
	5.2.4. Upstart
	5.2.5. System Services
	5.2.6. STONITH
	5.2.7. Nagios Plugins

	5.3. Resource Properties
	5.4. Resource Options
	5.4.1. Resource Meta-Attributes
	5.4.2. Setting Global Defaults for Resource Meta-Attributes
	5.4.3. Resource Instance Attributes

	5.5. Resource Operations
	5.5.1. Monitoring Resources for Failure
	5.5.2. Monitoring Resources When Administration is Disabled
	5.5.3. Setting Global Defaults for Operations
	5.5.4. When Implicit Operations Take a Long Time
	5.5.5. Multiple Monitor Operations
	5.5.6. Disabling a Monitor Operation

	Chapter 6. Resource Constraints
	6.1. Scores
	6.1.1. Infinity Math

	6.2. Deciding Which Nodes a Resource Can Run On
	6.2.1. Location Properties
	6.2.2. Asymmetrical "Opt-In" Clusters
	6.2.3. Symmetrical "Opt-Out" Clusters
	6.2.4. What if Two Nodes Have the Same Score

	6.3. Specifying the Order in which Resources Should Start/Stop
	6.3.1. Ordering Properties
	6.3.2. Optional and mandatory ordering

	6.4. Placing Resources Relative to other Resources
	6.4.1. Colocation Properties
	6.4.2. Mandatory Placement
	6.4.3. Advisory Placement
	6.4.4. Colocation by Node Attribute

	6.5. Resource Sets
	6.6. Ordering Sets of Resources
	6.6.1. Ordered Set
	6.6.2. Ordering Multiple Sets
	6.6.3. Resource Set OR Logic

	6.7. Colocating Sets of Resources

	Chapter 7. Alerts
	7.1. Alert Agents
	7.2. Alert Recipients
	7.3. Alert Meta-Attributes
	7.4. Alert Instance Attributes
	7.5. Alert Filters
	7.6. Using the Sample Alert Agents
	7.7. Writing an Alert Agent

	Chapter 8. Rules
	8.1. Rule Properties
	8.2. Node Attribute Expressions
	8.3. Time- and Date-Based Expressions
	8.3.1. Date Specifications
	8.3.2. Durations
	8.3.3. Sample Time-Based Expressions

	8.4. Using Rules to Determine Resource Location
	8.4.1. Location Rules Based on Other Node Properties
	8.4.2. Using score-attribute Instead of score

	8.5. Using Rules to Control Resource Options
	8.6. Using Rules to Control Cluster Options
	8.7. Ensuring Time-Based Rules Take Effect

	Chapter 9. Advanced Configuration
	9.1. Connecting from a Remote Machine
	9.2. Specifying When Recurring Actions are Performed
	9.3. Handling Resource Failure
	9.3.1. Failure Counts
	9.3.2. Failure Response

	9.4. Moving Resources
	9.4.1. Moving Resources Manually
	9.4.1.1. Standby Mode
	9.4.1.2. Moving One Resource

	9.4.2. Moving Resources Due to Connectivity Changes
	9.4.2.1. Tell Pacemaker to Monitor Connectivity
	9.4.2.2. Tell Pacemaker How to Interpret the Connectivity Data

	9.4.3. Migrating Resources

	9.5. Tracking Node Health
	9.5.1. Node Health Attributes
	9.5.2. Node Health Strategy
	9.5.3. Measuring Node Health

	9.6. Reloading Services After a Definition Change

	Chapter 10. Advanced Resource Types
	10.1. Groups - A Syntactic Shortcut
	10.1.1. Group Properties
	10.1.2. Group Options
	10.1.3. Group Instance Attributes
	10.1.4. Group Contents
	10.1.5. Group Constraints
	10.1.6. Group Stickiness

	10.2. Clones - Resources That Get Active on Multiple Hosts
	10.2.1. Clone Properties
	10.2.2. Clone Options
	10.2.3. Clone Instance Attributes
	10.2.4. Clone Contents
	10.2.5. Clone Constraints
	10.2.6. Clone Stickiness
	10.2.7. Clone Resource Agent Requirements
	10.2.7.1. Clone Notifications
	10.2.7.2. Proper Interpretation of Notification Environment Variables

	10.3. Multi-state - Resources That Have Multiple Modes
	10.3.1. Multi-state Properties
	10.3.2. Multi-state Options
	10.3.3. Multi-state Instance Attributes
	10.3.4. Multi-state Contents
	10.3.5. Monitoring Multi-State Resources
	10.3.6. Multi-state Constraints
	10.3.6.1. Using Multi-state Resources in Colocation Sets
	10.3.6.2. Using Multi-state Resources in Ordering Sets

	10.3.7. Multi-state Stickiness
	10.3.8. Which Resource Instance is Promoted
	10.3.9. Requirements for Multi-state Resource Agents
	10.3.9.1. Multi-state Notifications
	10.3.9.2. Proper Interpretation of Multi-state Notification Environment Variables

	10.4. Bundles - Isolated Environments
	10.4.1. Bundle Properties
	10.4.2. Docker Properties
	10.4.3. rkt Properties
	10.4.4. Bundle Network Properties
	10.4.5. Bundle Storage Properties
	10.4.6. Bundle Primitive
	10.4.7. Bundle Node Attributes
	10.4.8. Bundle Meta-Attributes
	10.4.9. Limitations of Bundles

	Chapter 11. Reusing Parts of the Configuration
	11.1. Reusing Resource Definitions
	11.1.1. Configuring Resources with Templates
	11.1.2. Using Templates in Constraints
	11.1.3. Using Templates in Resource Sets

	11.2. Reusing Rules, Options and Sets of Operations
	11.3. Tagging Configuration Elements
	11.3.1. Configuring Tags
	11.3.2. Using Tags in Constraints and Resource Sets

	Chapter 12. Utilization and Placement Strategy
	12.1. Utilization attributes
	12.2. Placement Strategy
	12.3. Allocation Details
	12.3.1. Which node is preferred to get consumed first when allocating resources?
	12.3.2. Which node has more free capacity?
	12.3.3. Which resource is preferred to be assigned first?

	12.4. Limitations and Workarounds

	Chapter 13. STONITH
	13.1. What Is STONITH?
	13.2. What STONITH Device Should You Use?
	13.3. Special Treatment of STONITH Resources
	13.4. Unfencing
	13.5. Configuring STONITH
	13.5.1. Example STONITH Configuration

	13.6. Advanced STONITH Configurations
	13.6.1. Example Dual-Layer, Dual-Device Fencing Topologies

	13.7. Remapping Reboots

	Chapter 14. Status — Here be dragons
	14.1. Node Status
	14.2. Transient Node Attributes
	14.3. Operation History
	14.3.1. Simple Operation History Example
	14.3.2. Complex Operation History Example

	Chapter 15. Multi-Site Clusters and Tickets
	15.1. Challenges for Multi-Site Clusters
	15.2. Conceptual Overview
	15.2.1. Ticket
	15.2.2. Dead Man Dependency
	15.2.3. Cluster Ticket Registry
	15.2.4. Configuration Replication

	15.3. Configuring Ticket Dependencies
	15.4. Managing Multi-Site Clusters
	15.4.1. Granting and Revoking Tickets Manually
	15.4.2. Granting and Revoking Tickets via a Cluster Ticket Registry
	15.4.2.1. Booth Requirements

	15.4.3. General Management of Tickets

	15.5. For more information

	Appendix A. FAQ
	Appendix B. More About OCF Resource Agents
	B.1. Location of Custom Scripts
	B.2. Actions
	B.3. How are OCF Return Codes Interpreted?
	B.4. OCF Return Codes

	Appendix C. Installing
	C.1. Installing the Software
	C.2. Enabling Pacemaker
	C.2.1. Enabling Pacemaker For Corosync 2.x
	C.2.2. Enabling Pacemaker For Corosync 1.x
	C.2.3. Enabling Pacemaker For Heartbeat

	Appendix D. Upgrading
	D.1. Upgrading Cluster Software
	D.1.1. Complete Cluster Shutdown
	D.1.2. Rolling (node by node)
	D.1.3. Detach and Reattach

	D.2. Upgrading the Configuration
	D.3. What Changed in 1.0
	D.3.1. New
	D.3.2. Changed
	D.3.3. Removed

	Appendix E. Init Script LSB Compliance
	Appendix F. Sample Configurations
	F.1. Empty
	F.2. Simple
	F.3. Advanced Configuration

	Appendix G. Further Reading
	Appendix H. Revision History
	Index

