1/2/2015 Guide To Using mysqlidxchk

Hack MySQL < mysqlidxchk < Download < Guide > Documentation > Bugs

Guide To Using mysqlidxchk

The purpose of mysglidxchk is to check MySQL databases and tables for indexes which are not being used. MySQL
does not currently have an intrinsic method or metric to track which indexes are or are not used. Therefore, a
script like mysglidxchk is needed to discover this information easily.

mysglidxchk can be used in the scope of an entire schema, or in the scope of a select number of databases.
Either way, mysqglidxchk requires one or more MySQL slow or general logs (or a "raw" log) in order to compare
the indexes used by the queries in the logs to all available indexes in the given scope. From this comparison,
mysglidxchk reports which indexes are not used (and, with the --show-used command line option, which indexes are
used) .

Therefore, the extent to which mysglidxchk can accurately report which indexes are not used is directly related
to the extent to which the queries in the given logs are representative of how the databases are used.

In this guide we will consider a number of topics. First, we'll consider some practical uses for mysqglidxchk.
Then, we'll look more closely at how mysglidxchk works. Finally, I will present a short demonstration of
mysglidxchk in action.

Practical Uses For mysqlidxchk

The idea for mysglidxchk was generously shared with me by Peter Zaitsev, who was previously employed as Manager
of High Performance Group at MySQL AB but is now an independent MySQL consultant. Hence, mysqglidxchk's most
obvious practical use is for MySQL consultants who wish to streamline a database schema. Among a multitude of
other tasks, a consultant will eventually want to remove any unnecessary and unused indexes from the database
schema. With a general log and the --databases command line option, a consultant can limit mysglidxchk to only
the databases that they are interested in.

Developers can use mysglidxchk to check for unused indexes—indexes which they had created earlier but have
since abandoned or changed. In the haste of development sometimes we (or at least I) forget about those "other"
indexes. As developers, we already know the queries which are ran against the database, therefore we don't
really need a MySQL general or slow log. Instead, we can write our own SQL statements to a "raw" log and use
mysglidxchk with that to check for forgotten indexes. A "raw" log is simply a text file that contains semi-
colon new-line (;\n) terminated MySQL statements.

In certain cases, system/database administrators can also use mysglidxchk to check for unused indexes.
Administrators would probably use a combination of slow and general logs and check every database in the entire
schema. For MySQL servers with many databases and tables, this would be practically impossible by hand, but
mysglidxchk can do it in a few seconds.

Finally, hackers can use mysqglidxchk to expose the unused indexes of some third-party application. For example,
I often times talk with people who are fixing and optimizing the database schema and queries of a third-party
app. With mysglidxchk these hackers can see what extraneous indexes the third-party app has left lurking in the
schema and remove them.

How mysqlidxchk Works

At over 900 lines, mysglidxchk is not a small script, yet it seems to do a relatively simple task: find unused
indexes. After I began writing mysglidxchk, I realized that it had to do a lot "background" work to insure that
it was truly helpful. Otherwise, due to the lack of certain features and functionalities in MySQL, mysqglidxchk
would fail far too easily.

Log Parsing & USE

The first and most important task is log parsing. The log parsing routines in mysglidxchk were taken
from mysglsla v1.4 and modified. The first problem to overcome in log parsing was retaining USE
statements for each query. As we already know, you cannot EXPLAIN a query until you've selected the
appropriate database.

For generallogs it is easy to find and retain the USE statements for every query because every connection
either connects with a database specified or issues an "Init DB" command. Since all connections are
uniquely numbered, mysqglidxchk keeps track of every connection's database usage and saves that
information with the connection's queries. In short: for general logs mysglidxchk always knows which
queries use which databases.

Slow logs are a different. Slow logs do not always contain USE statements and they do not contain any
other information that would allow mysglidxchk to easily discover a query's database. Therefore, for
slow logs mysglidxchk must often rely on "database discovery" which is discussed below. Alternatively,
one could manually add USE statements to a slow log if necessary.

The final kind of "log" file that mysglidxchk can parse is what I call a raw log. A raw log is simply a
text file containing SQL statements that are semi-colon new-line terminated. A single SQL statements
can span multiple lines, but it must end with a ";\n". In other words, the next SQL statement has to
start on the next line down. For raw logs, one must add the appropriate USE statements before the
queries that are to be used with that database. For example, here is a short raw log:

USE db_foo;

SELECT * FROM table WHERE col = 1;

USE db_bar;

UPDATE table SET col = 'hello' WHERE col = 'goodbye';

In this example, the SELECT statement is used with database db foo and the UPDATE is used with database
db bar. A USE statement remains in effect for all queries below it until another USE statement is
found.

Database Discovery

In cases where mysqglidxchk has queries with no database (no corresponding USE statement), it will try
to discover which database the query belongs to. This process of database discovery is actually quite
successful, except in one case. First, lets look at how mysglidxchk does database discovery.

One of the first things that mysglidxchk does when ran is read the entire information schema (a.k.a.
metadata, data dictionary, system catalog). Actually, the current version of mysqglidxchk does not read

http://hackmysql.com/mysqlidxchkguide 1/3

http://hackmysql.com/scripts/mysqlidxchk-1.1
http://hackmysql.com/mysqlidxchkbugs
http://hackmysql.com/
http://hackmysql.com/mysqlidxchkdoc
http://dev.mysql.com/doc/refman/5.0/en/query-log.html
http://www.mysqlperformanceblog.com/mysql-consulting/
http://dev.mysql.com/doc/refman/5.0/en/use.html
http://hackmysql.com/mysqlidxchkguide
http://hackmysql.com/mysqlidxchkdoc
http://hackmysql.com/mysqlidxchk
http://dev.mysql.com/doc/refman/5.0/en/explain.html
http://dev.mysql.com/doc/refman/5.0/en/information-schema.html
http://dev.mysql.com/doc/refman/5.0/en/slow-query-log.html

1/2/2015 Guide To Using mysqlidxchk

MySQL's INFORMATION SCHEMA database; it uses SHOW statements to discover every index in every table in
every database (unless the --databases option is used, then it only discovers the given databases).

Knowing every table in every database allows mysglidxchk to find a query's database by comparing the
tables that the query uses to the tables in each database. For example, suppose you have a database
called "foo" with tables "tl, t2, t3". Now suppose mysglidxchk encounters a query: "SELECT * FROM t1,
t2 WHERE tl.col = 'happy';". mysglidxchk will see that every table in the query is found in database
foo. Therefore, it assigns the query to USE foo.

As previously mentioned there is one case in which database discovery fails. You can probably already
guess it. The case is when there are two or more databases with identically named tables. A case like
this can happen on a shared server with, for example, many different installations of WordPress. In such
a case, the result of mysqglidxchk's database discovery is undefined. mysglidxchk will probably pick the
first matching database that it finds. There is no clean solution to this problem that I am aware of.

In general though, database discovery works well. It even works to find "missing" databases. If
mysqglidxchk has a query which uses a nonexistent database, it will employ database discovery to find
the query's missing database. Conversely, if mysglidxchk cannot find the missing database, it will
discard all queries which use the nonexistent database.

See the mysqlidxchk Documentation for two command line options related to database discovery: --no-db-
discovery and --no-discovery-report.

UPDATE Statements

Unless the --ignore-update command line is used, mysglidxchk converts UPDATE statements into SELECT
statements in order to EXPLAIN them. The method by which mysglidxchk does this is simple: it converts
"UPDATE table reference SET column reference WHERE etc." to "SELECT * FROM table reference WHERE etc."
Database discovery applies to UPDATE statements, too.

Showing Used Index

The --show-used option causes mysglidxchk to also show which indexes are used. At present, that is
about all it does except for one more thing. The indexes that are marked as used will have a number in
parenthesis beside them. This number is the number of unique (i.e. abstracted) queries which use that
index. I am open to suggestions about what else you would like mysglidxchk to say about used indexes?

A Short Demonstration of mysqlidxchk

Here follows two mock databases and some queries I created to demonstrate mysglidxchk in action. First we have
the databases: hacking and hacking2. hacking contains tables a, b, c. hacking2 contains tables x, y, z. The
first two tables of each database (a, b and x, y) contain one column which is indexed. The last tables contain
three columns which are indexed in various ways. Here are the indexes for all tables:

mysgl> SHOW INDEX FROM a; SHOW INDEX FROM b; SHOW INDEX FROM c;

S Fomm o U Fom - oo +

| Table | Non unique | Key name | Seq in index | Column_name |

S S S o Fom - +

| a | 1 | idx_Ta C1 | 1 | col 1

S Fom o S Fom e Fom o +

S S R Fom e Fom o +

| Table | Non unique | Key name | Seq in index | Column_ name |

S Fom o S Fom - Fom o +

| b | 1 | idx_Tb C1 | 1 | col 1 |
Fommmm o Fomm o S S S Fom o +

S S S L Fom o +
| Table | Non_unique | Key name | Seq_in index | Column name |
Fommmm Fom o S R S S +
| ¢ | 1 | idx_Tc C1 | 1 | col 1

| ¢ | 1 | idx_Tc C2 | 1 | col 2

| ¢ | 1 | idx_Tc C1 2 | 1 | col 1 |
| ¢ | 1 | idx_Tc C1 2 | 2 | col 2

| ¢ | 1 | idx_Tc C2_ 1 | 1 | col 2 |
| ¢ | 1 | idx_Tc C2_ 1 | 2 | col 1
oo Fom e oo S . +
mysqgl> SHOW INDEX FROM x; SHOW INDEX FROM y; SHOW INDEX FROM z;

S oo S o +

| Table | Non unique | Key name | Seq in index | Column_name |
oo Fom e oo Fom e Fom e +

| x | 1 | idx_Tx C1 | 1 | col 1 |
o Fom o S S oo +
o Fom e S S Fom e +

| Table | Non unique | Key name | Seq in index | Column_name |
Fommmm S oo S Fom e +

| v | 1 | idx_Ty C1 | 1 | col 1 |
Fommmm S oo S oo +
Fommmm N S Fom e S . +
| Table | Non unique | Key name | Seq in index | Column_name |
Fommmm S Fom e S S +
| z | 1 | idx Tz C3 2 | 1 | col 3

| z | 1 | idx Tz C3 2 | 2 | col 2

| z | 1 | idx Tz C1 2 | 1 | col 1

| z | 1 | idx Tz C1 2 | 2 | col 2

| z | 1 | idx Tz C1 | 1 | col 1
Fommmm S o S S +

Now, here are some queries from a raw log for these databases and tables:

USE hacking;
SELECT * FROM c;

http://hackmysql.com/mysqlidxchkguide 2/3

http://hackmysql.com/mysqlidxchkdoc
http://wordpress.org/
http://hackmysql.com/feedback
http://dev.mysql.com/doc/refman/5.0/en/show.html

1/2/2015

SELECT * FROM a AS apple, b AS banana
WHERE apple.col 1 =

USE hacking2;

banana.col 1;

SELECT * FROM x, y, 2z LIMIT 2;

SELECT z.col 3 FROM x,

SELECT bar.col 3 FROM x foo,
SELECT xX.col 1, y.col 1,
WHERE x.col 1 = y.col 1 and x.col 1

USE hacking;

z WHERE z.col 1
z bar WHERE bar.col 1 =
z.* FROM x,

SELECT cat.*, a.*, boy.*

FROM
c AS cat,
b boy,
a

WHERE

Guide To Using mysqlidxchk

x.col 1;

z.col 1;

a.col 1 = cat.col 2 AND cat.col 1 NOT IN (2,4, 6,

USE hacking;

UPDATE a SET col 1 = 2 WHERE col 1 IN (2,
UPDATE b AS boy SET col 1 = NULL WHERE 1;

USE hacking2;

UPDATE LOW_PRIORITY z zoot SET col 1 + 1, col 2 = 3 WHERE col 3 IS NOT NULL LIMIT 2;
UPDATE IGNORE x, y AS yak,

After inserting some random data into the tables I ran mysglidxchk:

./mysglidxchk --raw test raw --databases hacking,hacking2 --show-used

Reading raw log 'test raw'.

11 total valid queries,
Only using databases: hacking hacking2

Database: hacking
Table: a
Index:
Table: b
Index:
Table: c
Index:
Index:
Index:
Index:
Database: hacking2
Table: foo
Index:
Table: x
Index:
Table: y
Index:
Table: z
Index:
Index:
Index:

And that is all there is to it.

For now mysqglidxchk is very simple with just one report.
streamlining one more crucial part of your databases and tables:

(Doc rev: Mar 31 2007)

11 unique.

idx _Ta C1
idx Tb C1

idx Tc_C1

idx Tc C1 2

idx Tc C2

idx Tc C2 1

idx Tx C1
idx Tx C1
idx Ty C1

idx Tz C1

idx Tz C1 2
idx Tz C3_ 2

z zar SET col_1

6);

0 WHERE zar.col_1 IS NULL;

used (3)
used (3)
NOT used
NOT used
NOT used
NOT used
used (1)
used (4)
used (3)
NOT used

used (1)
used (1)

If this were a real database,

foo.col 1;

I would probably drop all those unused indexes.

However, its one report is quite helpful in

indexes.

http://hackmysql.com/mysqlidxchkguide

Last updated: 2009-09-30

3/3

